LEADER 03728nam 22006375 450 001 9910484478103321 005 20251113193647.0 010 $a981-334-822-4 024 7 $a10.1007/978-981-33-4822-6 035 $a(CKB)4100000011891415 035 $a(MiAaPQ)EBC6568268 035 $a(Au-PeEL)EBL6568268 035 $a(OCoLC)1246784938 035 $a(PPN)255291574 035 $a(DE-He213)978-981-33-4822-6 035 $a(EXLCZ)994100000011891415 100 $a20210416d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNonlinear Partial Differential Equations for Future Applications $eSendai, Japan, July 10?28 and October 2?6, 2017 /$fedited by Shigeaki Koike, Hideo Kozono, Takayoshi Ogawa, Shigeru Sakaguchi 205 $a1st ed. 2021. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2021. 215 $a1 online resource (267 pages) 225 1 $aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v346 311 08$a981-334-821-6 327 $aR. Denk, An Introduction To Maximal Regularity For Parabolic Evolution Equations -- Y. Kagei, On stability and bifurcation in parallel flows of compressible Navier-Stokes equations -- J. Fan and T. Ozawa, Uniform regularity for a compressible Gross-Pitaevskii-Navier-Stokes system -- T. Ogawa, Singular Limit Problem to the Keller-Segel System in Critical Spaces and Related Medical Problems ? An Application of Maximal Regularity -- A. Swiech, HJB Equation, Dynamic Programming Principle, and Stochastic Optimal Control -- S. Koike, Regularity of solutions of obstacle problems ? old & new -- A. Enciso, D. Peralta-Salas and F. Torres De Lizaur, High-Energy Eigenfunctions of the Laplacian on the Torus and The Sphere with Nodal Sets of Complicated Topology. 330 $aThis volume features selected, original, and peer-reviewed papers on topics from a series of workshops on Nonlinear Partial Differential Equations for Future Applications that were held in 2017 at Tohoku University in Japan. The contributions address an abstract maximal regularity with applications to parabolic equations, stability, and bifurcation for viscous compressible Navier?Stokes equations, new estimates for a compressible Gross?Pitaevskii?Navier?Stokes system, singular limits for the Keller?Segel system in critical spaces, the dynamic programming principle for stochastic optimal control, two kinds of regularity machineries for elliptic obstacle problems, and new insight on topology of nodal sets of high-energy eigenfunctions of the Laplacian. This book aims to exhibit various theories and methods that appear in the study of nonlinear partial differential equations. . 410 0$aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v346 606 $aMathematical analysis 606 $aFunctional analysis 606 $aIntegral equations 606 $aMathematical physics 606 $aAnalysis 606 $aFunctional Analysis 606 $aIntegral Equations 606 $aMathematical Physics 615 0$aMathematical analysis. 615 0$aFunctional analysis. 615 0$aIntegral equations. 615 0$aMathematical physics. 615 14$aAnalysis. 615 24$aFunctional Analysis. 615 24$aIntegral Equations. 615 24$aMathematical Physics. 676 $a515.353 702 $aKoike$b Shigeaki 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484478103321 996 $aNonlinear Partial Differential Equations for Future Applications$91896176 997 $aUNINA