LEADER 06476nam 2200541 450 001 9910484465103321 005 20231110232236.0 010 $a3-030-62543-5 035 $a(CKB)4100000011867267 035 $a(MiAaPQ)EBC6533317 035 $a(Au-PeEL)EBL6533317 035 $a(OCoLC)1245669171 035 $a(PPN)255291558 035 $a(EXLCZ)994100000011867267 100 $a20211019d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNumerical simulation in physics and engineering, trends and applications $electure notes of the XVIII 'Jacques-Louis Lions' Spanish-French School /$fedited by David Greiner, Mari?a Isabel Asensio, and Rafael Montenegro 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$dŠ2021 215 $a1 online resource (197 pages) $cillustrations 225 1 $aSEMA SIMAI Springer ;$vv.24 311 $a3-030-62542-7 327 $aIntro -- Preface -- Contents -- About the Editors -- An Introduction to Quasi-Static Aeroelasticity -- 1 Introduction -- 2 The Collapse of Tacoma Narrows Bridge -- 2.1 What Has Been Observed -- 2.2 The Strouhal Instability -- 2.3 The Resonance of a Bridge -- 2.4 The Buffting Phenomenon -- 2.5 Flutter Induced by a Coupling Between Two Eigenmodes -- 2.5.1 A Short Description of Flutter Phenomenon -- 2.5.2 Linear Stability Analysis -- 2.5.3 Discussion on the Apparition of the Flutter (Roots in ? Are Real or Complex Conjugate) -- 2.5.4 Graphic Interpretation of the Flutter -- 2.5.5 Discussion of the Flutter Phenomenon for the Tacoma Narrows Bridge -- 2.6 The Galloping of the Bridge and the Stall Flutter Phenomenon -- 2.7 Letter from W.P. Rodden to R. Scanlan About Tacoma -- 2.8 Answer from R. Scanlan to W.P. Rodden About Tacoma -- 2.9 The Stall Flutter Phenomenon in the Torsion of the Bridge -- 3 Generalization of the Apparent Wind Method -- 4 Assembly of Several Rigid Structures -- 5 Control Strategy for the Full System -- 5.1 The Cooperative Strategy -- 5.2 How to Compute the Limit of the Optimal Control When 0 -- 5.3 The Non-cooperative Strategy -- 5.3.1 Existence (and Uniqueness) of an Exact Decentralized Control with Coordination -- 5.4 A Coordination Algorithm for the Decentralized Control -- 6 Limit Cycle of Oscillations -- 6.1 Definition of a Limit Cycle of Oscillations -- 6.2 Localisation of Limit Cycles of Oscillations -- 6.3 How to Find Invariant Sets? -- 7 Computation of the Limit Cycle -- 7.1 Canonical Formulation for (98) -- 7.2 Second Step: Elimination of Second Order Terms -- 7.3 Partial Elimination of Terms of Order 3 -- 8 The Stall Flutter of a Model in a Wind Tunnel -- 8.1 The Measures from the Wind Tunnel -- 8.2 The Simple Mathematical Model Used -- 9 About the Added Mass Method -- 10 Conclusion -- References. 327 $aComputational Treatment of Interface Dynamics via Phase-Field Modeling -- 1 Introduction -- 1.1 Interface Dynamics in Computational Mechanics and the Phase-Field Method -- 1.2 Notational Conventions -- 2 Derivation of Phase-Field Models via Diffusification -- 2.1 A Classical Moving Boundary Problem for Solidification of Pure Materials -- 2.2 The Basis of Diffusification -- 2.3 The Phase-Field Model for Solidification -- 2.4 The Diffuse-Interface Transition Profile: Asymptotic Analysis -- 3 General Framework of Thermomechanics and Energy Dissipation for Phase-Field Models -- 3.1 The Idea Behind Thermomechanically-Consistent Phase-Field Modeling -- 3.2 Allen-Cahn and Cahn-Hilliard -- 3.2.1 Allen-Cahn Equation -- 3.2.2 Cahn-Hilliard Equation -- 3.3 Navier-Stokes-Cahn-Hilliard -- 4 The Diffuse Domain Approach -- 4.1 Derivation of a Diffuse Domain Model for a Standard Convection-Diffusion Problem -- 4.2 Diffuse Domain Method for Problems Posed on Evolving Surfaces -- 5 Numerical Examples -- 5.1 Solidification Model -- 5.2 Cahn-Hilliard Equation -- 5.3 Diffuse Domain Model -- References -- Consistent Internal Energy Based Schemes for the Compressible Euler Equations -- 1 Introduction -- 2 Derivation of the Numerical Schemes -- 2.1 A Basic Result on Convection Operators -- 2.2 Internal Energy Formulation -- 2.3 The Time Semi-discrete Pressure Correction Scheme -- 2.4 The Fully Discrete Pressure Correction Scheme -- 2.5 A Segregated Variant -- 2.6 A Numerical Test -- 3 Entropy -- 3.1 Meshes and Discrete Norms -- 3.2 Implicit Schemes -- 3.3 Explicit Schemes -- References -- Comparison and Analysis of Natural Laminar Flow Airfoil Shape Optimization Results at Transonic Regime with Bumps and Trailing Edge Devices Solved by Pareto Games and EAs -- 1 Introduction -- 2 NLF Airfoil Shape Design Optimization with Bump and TED Devices for Shock Wave Control. 327 $a3 Comparison and Analysis of Optimization Results Using SCB and TED -- 3.1 Comparison and Analysis of Results: Advantages and Drawbacks of SCB and TED Devices -- 3.1.1 Comparing Efficiency of SCB Technology Versus TED Technology -- 3.1.2 Comparing the Design Quality Level of SCB Technology and TED Technology -- 3.2 Extension to the 3-D NLF Wing Design Optimization with 3-D SCB/TED Devices -- 4 Conclusion and Perspectives -- References -- Time-Parallel Algorithm for Two Phase Flows Simulation -- 1 Introduction -- 2 Model -- 2.1 Numerical Method -- 3 The Parareal Algorithm -- 3.1 Original Parareal Algorithm -- 3.2 Multistep Variant of Parareal -- 4 Test Case -- 4.1 About the Convergence -- 4.2 Speed-Up Performances -- 5 Conclusion -- References -- Modelling of Bedload Sediment Transport for Weak and Strong Regimes -- 1 Introduction -- 2 Proposed Model -- 2.1 Convergence to the Classical SVE System for Weak Regimes -- 2.2 Energy Balance -- References. 410 0$aSEMA SIMAI Springer 606 $aApplications of Mathematics 606 $aMathematical Modeling and Industrial Mathematics 606 $aModels matemātics$2thub 608 $aLlibres electrōnics$2thub 615 0$aApplications of Mathematics. 615 0$aMathematical Modeling and Industrial Mathematics. 615 7$aModels matemātics 676 $a551.48 702 $aAsensio$b Mari?a Isabel 702 $aGreiner$b David 702 $aMontenegro$b R$g(Rafael) , 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484465103321 996 $aNumerical simulation in physics and engineering, trends and applications$92597979 997 $aUNINA