LEADER 03838nam 22006255 450 001 9910484446203321 005 20251113203726.0 010 $a3-030-67917-9 024 7 $a10.1007/978-3-030-67917-0 035 $a(CKB)4100000011867306 035 $a(MiAaPQ)EBC6534963 035 $a(Au-PeEL)EBL6534963 035 $a(OCoLC)1246581143 035 $a(PPN)255290039 035 $a(DE-He213)978-3-030-67917-0 035 $a(EXLCZ)994100000011867306 100 $a20210405d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStochastic Approaches to Electron Transport in Micro- and Nanostructures /$fby Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2021. 215 $a1 online resource (xvi, 214 pages) $cillustrations 225 1 $aModeling and Simulation in Science, Engineering and Technology,$x2164-3725 311 08$a3-030-67916-0 320 $aIncludes bibliographical references. 327 $aPart I Aspets of Electron Transport Modeling: 1. Concepts of Device Modeling -- 2. The Semiconductor Model: Fundamentals -- 3. Transport Theories in Phase Space -- 4. Monte Carlo Computing -- Part II Stochastic Algorithms for Boltzmann Transport: 5. Homogeneous Transport: Empirical Approach -- 6. Homogeneous Transport: Stochastic Approach -- 7. Small Signal Analysis -- 8. Inhomogeneous Stationary Transport -- 9. General Transport: Self-Consistent Mixed Problem -- 10. Event Biasing -- Part III Stochastic Algorithms for Quantum Transport: 11. Wigner Function Modeling -- 12. Evolution in a Quantum Wire -- 13. Hierarchy of Kinetic Models -- 14. Stationary Quantum Particle Attributes -- 15. Transient Quantum Particle Attributes. . 330 $aThe book serves as a synergistic link between the development of mathematical models and the emergence of stochastic (Monte Carlo) methods applied for the simulation of current transport in electronic devices. Regarding the models, the historical evolution path, beginning from the classical charge carrier transport models for microelectronics to current quantum-based nanoelectronics, is explicatively followed. Accordingly, the solution methods are elucidated from the early phenomenological single particle algorithms applicable for stationary homogeneous physical conditions up to the complex algorithms required for quantum transport, based on particle generation and annihilation. The book fills the gap between monographs focusing on the development of the theory and the physical aspects of models, their application, and their solution methods and monographs dealing with the purely theoretical approaches for finding stochastic solutions of Fredholm integral equations. 410 0$aModeling and Simulation in Science, Engineering and Technology,$x2164-3725 606 $aMathematics 606 $aMathematical physics 606 $aComputer science 606 $aApplications of Mathematics 606 $aTheoretical, Mathematical and Computational Physics 606 $aComputer Science 615 0$aMathematics. 615 0$aMathematical physics. 615 0$aComputer science. 615 14$aApplications of Mathematics. 615 24$aTheoretical, Mathematical and Computational Physics. 615 24$aComputer Science. 676 $a574.192 700 $aNedjalkov$b Mihail$01221186 702 $aDimov$b Ivan$f1963- 702 $aSelberherr$b Siegfried$f1955- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484446203321 996 $aStochastic approaches to electron transport in micro- and nanostructures$92831548 997 $aUNINA