LEADER 04335nam 22008055 450 001 9910484298403321 005 20251113173924.0 010 $a3-319-57454-X 024 7 $a10.1007/978-3-319-57454-7 035 $a(CKB)3850000000027405 035 $a(DE-He213)978-3-319-57454-7 035 $a(MiAaPQ)EBC6285529 035 $a(MiAaPQ)EBC5595057 035 $a(Au-PeEL)EBL5595057 035 $a(OCoLC)985359153 035 $a(PPN)200512587 035 $a(EXLCZ)993850000000027405 100 $a20170422d2017 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in Knowledge Discovery and Data Mining $e21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings, Part I /$fedited by Jinho Kim, Kyuseok Shim, Longbing Cao, Jae-Gil Lee, Xuemin Lin, Yang-Sae Moon 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XXXII, 841 p. 242 illus.) 225 1 $aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v10234 311 08$a3-319-57453-1 327 $aClassification and deep learning -- Social network and graph mining -- Privacy-preserving mining and security/risk applications -- Spatio-temporal and sequential data mining -- Clustering and anomaly detection -- Recommender system -- Feature selection -- Text and opinion mining -- Clustering and matrix factorization -- Dynamic, stream data mining -- Novel models and algorithms -- Behavioral data mining -- Graph clustering and community detection -- Dimensionality reduction. 330 $aThis two-volume set, LNAI 10234 and 10235, constitutes the thoroughly refereed proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2017, held in Jeju, South Korea, in May 2017. The 129 full papers were carefully reviewed and selected from 458 submissions. They are organized in topical sections named: classification and deep learning; social network and graph mining; privacy-preserving mining and security/risk applications; spatio-temporal and sequential data mining; clustering and anomaly detection; recommender system; feature selection; text and opinion mining; clustering and matrix factorization; dynamic, stream data mining; novel models and algorithms; behavioral data mining; graph clustering and community detection; dimensionality reduction. 410 0$aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v10234 606 $aData mining 606 $aArtificial intelligence 606 $aInformation storage and retrieval systems 606 $aApplication software 606 $aDatabase management 606 $aData protection 606 $aData Mining and Knowledge Discovery 606 $aArtificial Intelligence 606 $aInformation Storage and Retrieval 606 $aComputer and Information Systems Applications 606 $aDatabase Management 606 $aData and Information Security 615 0$aData mining. 615 0$aArtificial intelligence. 615 0$aInformation storage and retrieval systems. 615 0$aApplication software. 615 0$aDatabase management. 615 0$aData protection. 615 14$aData Mining and Knowledge Discovery. 615 24$aArtificial Intelligence. 615 24$aInformation Storage and Retrieval. 615 24$aComputer and Information Systems Applications. 615 24$aDatabase Management. 615 24$aData and Information Security. 676 $a006.3 702 $aKim$b Jinho$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aShim$b Kyuseok$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aCao$b Longbing$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLee$b Jae-Gil$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLin$b Xuemin$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aMoon$b Yang-Sae$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484298403321 996 $aAdvances in Knowledge Discovery and Data Mining$9772012 997 $aUNINA