LEADER 02479nam 2200601 450 001 9910484291403321 005 20220218111232.0 010 $a3-540-74776-1 024 7 $a10.1007/978-3-540-74776-5 035 $a(CKB)1000000000437247 035 $a(SSID)ssj0000320730 035 $a(PQKBManifestationID)11231134 035 $a(PQKBTitleCode)TC0000320730 035 $a(PQKBWorkID)10249737 035 $a(PQKB)11543487 035 $a(DE-He213)978-3-540-74776-5 035 $a(MiAaPQ)EBC3062063 035 $a(MiAaPQ)EBC6863166 035 $a(Au-PeEL)EBL6863166 035 $a(PPN)123739683 035 $a(EXLCZ)991000000000437247 100 $a20220218d2008 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aZeta functions of groups and rings /$fMarcus du Sautoy, Luke Woodward 205 $a1st ed. 2008. 210 1$aBerlin ;$aHeidelberg :$cSpringer-Verlag,$d[2008] 210 4$dİ2008 215 $a1 online resource (XII, 212 p.) 225 1 $aLecture Notes in Mathematics ;$v1925 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-74701-X 320 $aIncludes bibliographical references (p. [201]-203) and indexes. 327 $aNilpotent Groups: Explicit Examples -- Soluble Lie Rings -- Local Functional Equations -- Natural Boundaries I: Theory -- Natural Boundaries II: Algebraic Groups -- Natural Boundaries III: Nilpotent Groups. 330 $aZeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an investigation of functional equations. Many important examples of zeta functions are calculated and recorded providing an important data base of explicit examples and methods for calculation. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1925. 606 $aFunctions, Zeta 606 $aGroup theory 615 0$aFunctions, Zeta. 615 0$aGroup theory. 676 $a515.56 700 $aDu Sautoy$b Marcus$067661 702 $aWoodward$b Luke 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484291403321 996 $aZeta Functions of Groups and Rings$92585860 997 $aUNINA