LEADER 03355nam 2200625 450 001 9910484241303321 005 20220504201537.0 010 $a1-280-81753-4 010 $a9786610817535 010 $a3-540-71129-5 024 7 $a10.1007/978-3-540-71129-2 035 $a(CKB)1000000000282743 035 $a(EBL)3036590 035 $a(SSID)ssj0000110990 035 $a(PQKBManifestationID)11139212 035 $a(PQKBTitleCode)TC0000110990 035 $a(PQKBWorkID)10074723 035 $a(PQKB)10720041 035 $a(DE-He213)978-3-540-71129-2 035 $a(MiAaPQ)EBC3036590 035 $a(MiAaPQ)EBC6703031 035 $a(Au-PeEL)EBL6703031 035 $a(PPN)123160715 035 $a(EXLCZ)991000000000282743 100 $a20220504d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBeyond partial differential equations $eon linear and quasi-linear abstract hyperbolic evolution equations /$fHorst Reinhard Beyer 205 $a1st ed. 2007. 210 1$aBerlin, Heidelberg :$cSpringer-Verlag,$d[2007] 210 4$dİ2007 215 $a1 online resource (290 p.) 225 1 $aLecture Notes in Mathematics ;$v1898 300 $aDescription based upon print version of record. 311 $a3-540-71128-7 320 $aIncludes bibliographical references and indexes. 327 $aConventions -- Mathematical Introduction -- Prerequisites -- Strongly Continuous Semigroups -- Examples of Generators of Strongly Continuous Semigroups -- Intertwining Relations, Operator Homomorphisms -- Examples of Constrained Systems -- Kernels, Chains, and Evolution Operators -- The Linear Evolution Equation -- Examples of Linear Evolution Equations -- The Quasi-Linear Evolution Equation -- Examples of Quasi-Linear Evolution Equations. 330 $aThe present volume is self-contained and introduces to the treatment of linear and nonlinear (quasi-linear) abstract evolution equations by methods from the theory of strongly continuous semigroups. The theoretical part is accessible to graduate students with basic knowledge in functional analysis. Only some examples require more specialized knowledge from the spectral theory of linear, self-adjoint operators in Hilbert spaces. Particular stress is on equations of the hyperbolic type since considerably less often treated in the literature. Also, evolution equations from fundamental physics need to be compatible with the theory of special relativity and therefore are of hyperbolic type. Throughout, detailed applications are given to hyperbolic partial differential equations occurring in problems of current theoretical physics, in particular to Hermitian hyperbolic systems. This volume is thus also of interest to readers from theoretical physics. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1898. 606 $aDifferential equations, Partial 606 $aDifferential equations, Linear 615 0$aDifferential equations, Partial. 615 0$aDifferential equations, Linear. 676 $a515.353 700 $aBeyer$b Horst Reinhard$0472506 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484241303321 996 $aBeyond partial differential equations$9230607 997 $aUNINA