LEADER 03001nam 2200601 450 001 9910484163003321 005 20220820081349.0 010 $a3-540-73705-7 024 7 $a10.1007/978-3-540-73705-6 035 $a(CKB)1000000000437256 035 $a(SSID)ssj0000317509 035 $a(PQKBManifestationID)11208025 035 $a(PQKBTitleCode)TC0000317509 035 $a(PQKBWorkID)10289356 035 $a(PQKB)10450866 035 $a(DE-He213)978-3-540-73705-6 035 $a(MiAaPQ)EBC3062195 035 $a(MiAaPQ)EBC6819150 035 $a(Au-PeEL)EBL6819150 035 $a(OCoLC)1287131243 035 $a(PPN)123739292 035 $a(EXLCZ)991000000000437256 100 $a20220820d2008 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aEntropy methods for the Boltzmann equation $electures from a special semester at the Centre E?mile Borel, Institut H. Poincare?, Paris, 2001 /$fFraydoun Rezakhanlou, Ce?dric Villani ; editors, Franc?ois Golse, Stefano Olla 205 $a1st ed. 2008. 210 1$aBerlin ;$aHeidelberg ;$aNew York :$cSpringer,$d[2008] 210 4$d©2008 215 $a1 online resource (XII, 113 p.) 225 1 $aLecture notes in mathematics ;$v1916 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-73704-9 320 $aIncludes bibliographical references and index. 330 $aEntropy and entropy production have recently become mathematical tools for kinetic and hydrodynamic limits, when deriving the macroscopic behaviour of systems from the interaction dynamics of their many microscopic elementary constituents at the atomic or molecular level. During a special semester on Hydrodynamic Limits at the Centre Émile Borel in Paris, 2001 two of the research courses were held by C. Villani and F. Rezakhanlou. Both illustrate the major role of entropy and entropy production in a mutual and complementary manner and have been written up and updated for joint publication. Villani describes the mathematical theory of convergence to equilibrium for the Boltzmann equation and its relation to various problems and fields, including information theory, logarithmic Sobolev inequalities and fluid mechanics. Rezakhanlou discusses four conjectures for the kinetic behaviour of the hard sphere models and formulates four stochastic variations of this model, also reviewing known results for these. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1916. 606 $aTransport theory 615 0$aTransport theory. 676 $a530.138 700 $aRezakhanlou$b Fraydoun$0472514 702 $aVillani$b Ce?dric$f1973- 702 $aGolse$b Franc?ois 702 $aOlla$b Stefano$f1959- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484163003321 996 $aEntropy methods for the Boltzmann equation$9230592 997 $aUNINA