LEADER 01231nam 2200373 450 001 9910510469903321 005 20230821191056.0 024 7 $a10.1145/3424978 035 $a(CKB)5470000000736667 035 $a(NjHacI)995470000000736667 035 $a(EXLCZ)995470000000736667 100 $a20230821d2020 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aProceedings of the 4th International Conference on Computer Science and Application Engineering /$fAli Emrouznejad 210 1$aNew York, N.Y. :$cAssociation for Computing Machinery,$d2020. 210 4$dİ2020 215 $a1 online resource (1038 pages) 225 0 $aACM Other conferences 311 $a1-4503-7772-6 320 $aIncludes bibliographical references and index. 606 $aArtificial intelligence 615 0$aArtificial intelligence. 676 $a006.3 700 $aEmrouznejad$b Ali$0993586 801 0$bNjHacI 801 1$bNjHacl 906 $aBOOK 912 $a9910510469903321 996 $aProceedings of the 4th International Conference on Computer Science and Application Engineering$93431631 997 $aUNINA LEADER 03407nam 22007095 450 001 9910484119403321 005 20230810172026.0 010 $a3-030-61867-6 024 7 $a10.1007/978-3-030-61867-4 035 $a(CKB)4100000011716924 035 $a(MiAaPQ)EBC6455885 035 $a(DE-He213)978-3-030-61867-4 035 $a(PPN)253254736 035 $a(EXLCZ)994100000011716924 100 $a20210111d2021 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFrom Shortest Paths to Reinforcement Learning $eA MATLAB-Based Tutorial on Dynamic Programming /$fby Paolo Brandimarte 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (XI, 207 p. 67 illus.) 225 1 $aEURO Advanced Tutorials on Operational Research,$x2364-6888 311 $a3-030-61866-8 327 $aThe dynamic programming principle -- Implementing dynamic programming -- Modeling for dynamic programming -- Numerical dynamic programming for discrete states -- Approximate dynamic programming and reinforcement learning for discrete states -- Numerical dynamic programming for continuous states -- Approximate dynamic programming and reinforcement learning for continuous states. 330 $aDynamic programming (DP) has a relevant history as a powerful and flexible optimization principle, but has a bad reputation as a computationally impractical tool. This book fills a gap between the statement of DP principles and their actual software implementation. Using MATLAB throughout, this tutorial gently gets the reader acquainted with DP and its potential applications, offering the possibility of actual experimentation and hands-on experience. The book assumes basic familiarity with probability and optimization, and is suitable to both practitioners and graduate students in engineering, applied mathematics, management, finance and economics. 410 0$aEURO Advanced Tutorials on Operational Research,$x2364-6888 606 $aOperations research 606 $aManagement science 606 $aEconometrics 606 $aNumerical analysis 606 $aSocial sciences$xMathematics 606 $aIndustrial Management 606 $aOperations Research and Decision Theory 606 $aOperations Research, Management Science 606 $aQuantitative Economics 606 $aNumerical Analysis 606 $aMathematics in Business, Economics and Finance 606 $aIndustrial Management 615 0$aOperations research. 615 0$aManagement science. 615 0$aEconometrics. 615 0$aNumerical analysis. 615 0$aSocial sciences$xMathematics. 615 0$aIndustrial Management. 615 14$aOperations Research and Decision Theory. 615 24$aOperations Research, Management Science . 615 24$aQuantitative Economics. 615 24$aNumerical Analysis. 615 24$aMathematics in Business, Economics and Finance. 615 24$aIndustrial Management. 676 $a519.703 700 $aBrandimarte$b Paolo$0283971 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 906 $aBOOK 912 $a9910484119403321 996 $aFrom shortest paths to reinforcement learning$92850794 997 $aUNINA