LEADER 02157nam 2200553 a 450 001 9910484112903321 005 20200520144314.0 010 $a9783642204388 010 $a3642204384 024 7 $a10.1007/978-3-642-20438-8 035 $a(CKB)2670000000096125 035 $a(SSID)ssj0000506040 035 $a(PQKBManifestationID)11341136 035 $a(PQKBTitleCode)TC0000506040 035 $a(PQKBWorkID)10512893 035 $a(PQKB)10323231 035 $a(DE-He213)978-3-642-20438-8 035 $a(MiAaPQ)EBC3066848 035 $a(PPN)153867779 035 $a(EXLCZ)992670000000096125 100 $a20110610d2011 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aClassical summation in commutative and noncommutative LP-spaces /$fAndreas Defant 205 $a1st ed. 2011. 210 $aNew York $cSpringer$d2011 215 $a1 online resource (VIII, 171 p. 17 illus.) 225 1 $aLecture notes in mathematics (Springer-Verlag),$x0075-8434 ;$v2021 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783642204371 311 08$a3642204376 320 $aIncludes bibliographical references and indexes. 327 $a1 Introduction -- 2 Commutative Theory -- 3 Noncommutative Theory. 330 $aThe aim of this research is to develop a systematic scheme that makes it possible to transform important parts of the by now classical theory of summation of general orthonormal series into a similar theory for series in noncommutative $L_p$-spaces constructed over a noncommutative measure space (a von Neumann algebra of operators acting on a Hilbert space  together with a faithful normal state on this algebra). 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v2021. 606 $aLp spaces 615 0$aLp spaces. 676 $a515 700 $aDefant$b Andreas$060538 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484112903321 996 $aClassical summation in commutative and noncommutative Lp-spaces$9261808 997 $aUNINA