LEADER 02879nam 2200625 450 001 9910484109103321 005 20210216123052.0 010 $a1-280-61516-8 010 $a9786610615162 010 $a3-540-32060-1 024 7 $a10.1007/b133345 035 $a(CKB)1000000000282738 035 $a(EBL)3036458 035 $a(SSID)ssj0000107025 035 $a(PQKBManifestationID)11684539 035 $a(PQKBTitleCode)TC0000107025 035 $a(PQKBWorkID)10027371 035 $a(PQKB)10702594 035 $a(DE-He213)978-3-540-32060-9 035 $a(MiAaPQ)EBC3036458 035 $a(MiAaPQ)EBC6351732 035 $a(PPN)123131189 035 $a(EXLCZ)991000000000282738 100 $a20210216d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAsymptotics for dissipative nonlinear equations /$fN. Hayashi [and three others] 205 $a1st ed. 2006. 210 1$aBerlin ;$aHeidelberg :$cSpringer,$d[2006] 210 4$dİ2006 215 $a1 online resource (569 p.) 225 1 $aLecture notes in mathematics ;$v1884 300 $aDescription based upon print version of record. 311 $a3-540-32059-8 320 $aIncludes bibliographical references (pages [541]-553) and index. 327 $aPreliminary results -- Weak Nonlinearity -- Critical Nonconvective Equations -- Critical Convective Equations -- Subcritical Nonconvective Equations -- Subcritical Convective Equations. 330 $aMany of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1884. 606 $aDifferential equations, Nonlinear$xAsymptotic theory 606 $aDifferential equations, Partial$xAsymptotic theory 615 0$aDifferential equations, Nonlinear$xAsymptotic theory. 615 0$aDifferential equations, Partial$xAsymptotic theory. 676 $a515.35 700 $aHayashi$b Nakao$0282340 701 $aHayashi$b Nakao$0282340 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484109103321 996 $aAsymptotics for dissipative nonlinear equations$91020526 997 $aUNINA