LEADER 02905nam 2200637 450 001 9910484101703321 005 20210217224846.0 010 $a1-280-90224-8 010 $a9786610902248 010 $a3-540-71225-9 024 7 $a10.1007/978-3-540-71225-1 035 $a(CKB)1000000000282739 035 $a(EBL)3036674 035 $a(SSID)ssj0000289453 035 $a(PQKBManifestationID)11911071 035 $a(PQKBTitleCode)TC0000289453 035 $a(PQKBWorkID)10404630 035 $a(PQKB)11362083 035 $a(DE-He213)978-3-540-71225-1 035 $a(MiAaPQ)EBC3036674 035 $a(MiAaPQ)EBC6351696 035 $a(PPN)123160847 035 $a(EXLCZ)991000000000282739 100 $a20210217d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAttractivity and bifurcation for nonautonomous dynamical systems. /$fMartin Rasmussen 205 $a1st ed. 2007. 210 1$aBerlin, Germany :$cSpringer,$d[2007] 210 4$d©2007 215 $a1 online resource (221 p.) 225 1 $aLecture notes in mathematics ;$v1907 300 $aDescription based upon print version of record. 311 $a3-540-71224-0 320 $aIncludes bibliographical references and index. 327 $aNotions of Attractivity and Bifurcation -- Nonautonomous Morse Decompositions -- LinearSystems -- Nonlinear Systems -- Bifurcations in Dimension One -- Bifurcations of Asymptotically Autonomous Systems. 330 $aAlthough, bifurcation theory of equations with autonomous and periodic time dependence is a major object of research in the study of dynamical systems since decades, the notion of a nonautonomous bifurcation is not yet established. In this book, two different approaches are developed which are based on special definitions of local attractivity and repulsivity. It is shown that these notions lead to nonautonomous Morse decompositions, which are useful to describe the global asymptotic behavior of systems on compact phase spaces. Furthermore, methods from the qualitative theory for linear and nonlinear systems are derived, and nonautonomous counterparts of the classical one-dimensional autonomous bifurcation patterns are developed. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1907. 606 $aDifferential equations, Linear 606 $aDifferentiable dynamical systems 606 $aBifurcation theory 615 0$aDifferential equations, Linear. 615 0$aDifferentiable dynamical systems. 615 0$aBifurcation theory. 676 $a515/.39 700 $aRasmussen$b Martin$f1975-$0307511 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484101703321 996 $aAttractivity and bifurcation for nonautonomous dynamical systems$9230609 997 $aUNINA LEADER 01037nam0 22002651i 450 001 UON00042961 005 20231205102154.142 100 $a20020107d1975 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| 1|||| 200 1 $aˆAn ‰introduction to the study of classical armenian$fRobert Godel 210 $aWiesbaden$cReichert$d1975 215 $aXI, 139 p.$d24 cm 606 $aLingua armena$xArmeno classico$xManuali$3UONC014727$2FI 620 $aDE$dWiesbaden$3UONL003153 686 $aCAU II F$cCAUCASO E ARMENIA - LINGUISTICA - ARMENO$2A 700 1$aGODEL$bRobert$3UONV019323$0159039 712 $aReichert$3UONV246612$4650 801 $aIT$bSOL$c20250502$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00042961 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI CAU II F 004 $eSI SA 29404 5 004 996 $aIntroduction to the study of classical armenian$91153226 997 $aUNIOR