LEADER 03510nam 22006255 450 001 9910484074603321 005 20200701022721.0 010 $a3-030-30581-3 024 7 $a10.1007/978-3-030-30581-9 035 $a(CKB)4100000009160268 035 $a(DE-He213)978-3-030-30581-9 035 $a(MiAaPQ)EBC5940989 035 $a(PPN)243769504 035 $a(EXLCZ)994100000009160268 100 $a20190831d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAnalysis and Classification of EEG Signals for Brain?Computer Interfaces /$fby Szczepan Paszkiel 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (VI, 132 p.) 225 1 $aStudies in Computational Intelligence,$x1860-949X ;$v852 311 $a3-030-30580-5 327 $aChapter 1. Introduction -- Chapter 2. Data acquisition methods for human brain activity -- Chapter 3. Brain-computer interface (BCI) technology, etc. 330 $aThis book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain?computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore?Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology. In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain?computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain?computer technology and virtual reality technology. 410 0$aStudies in Computational Intelligence,$x1860-949X ;$v852 606 $aComputational intelligence 606 $aBiomedical engineering 606 $aNeurobiology 606 $aArtificial intelligence 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aBiomedical Engineering and Bioengineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T2700X 606 $aNeurobiology$3https://scigraph.springernature.com/ontologies/product-market-codes/L25066 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 615 0$aComputational intelligence. 615 0$aBiomedical engineering. 615 0$aNeurobiology. 615 0$aArtificial intelligence. 615 14$aComputational Intelligence. 615 24$aBiomedical Engineering and Bioengineering. 615 24$aNeurobiology. 615 24$aArtificial Intelligence. 676 $a003.5 676 $a612.80285 700 $aPaszkiel$b Szczepan$4aut$4http://id.loc.gov/vocabulary/relators/aut$01228634 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484074603321 996 $aAnalysis and Classification of EEG Signals for Brain?Computer Interfaces$92852400 997 $aUNINA