LEADER 03443nam 2200649Ia 450 001 9910484006803321 005 20200520144314.0 010 $a3-642-29511-8 024 7 $a10.1007/978-3-642-29511-9 035 $a(CKB)3400000000085873 035 $a(SSID)ssj0000697600 035 $a(PQKBManifestationID)11482021 035 $a(PQKBTitleCode)TC0000697600 035 $a(PQKBWorkID)10708655 035 $a(PQKB)11726011 035 $a(DE-He213)978-3-642-29511-9 035 $a(MiAaPQ)EBC3070467 035 $a(PPN)165096047 035 $a(EXLCZ)993400000000085873 100 $a20120324d2012 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aQuantum many body systems $eCetraro, Italy 2010 /$fVincent Rivasseau ... [et al.] ; editors: Alessandro Giuliani, Vieri Mastropietro, Jakob Yngvason 205 $a1st ed. 2012. 210 $aBerlin ;$aNew York $cSpringer Verlag$d2012 215 $a1 online resource (XIII, 180 p. 11 illus., 1 illus. in color.) 225 1 $aLecture notes in mathematics ;$v2051 300 $aAdditional authors: Robert Seiringer; Jan Philip Solovej; Thomas Spencer. 311 $a3-642-29510-X 320 $aIncludes bibliographical references. 327 $a 1.Introduction to the Renormalization Group with Applications to Non-Relativistic Quantum Electron Gases. Vincent Rivasseau -- 2.Cold Quantum Gases and Bose-Einstein Condensation. Robert Seiringer -- 3. Quantum Coulomb gases. Jan Philip Solovey -- 4. SUSY Statistical Mechanics and Random Band Matrices. Thomas Spencer. 330 $aThe book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v2051. 606 $aMany-body problem 606 $aMathematics 615 0$aMany-body problem. 615 0$aMathematics. 676 $a530.120151 686 $a82B10$a81V70$a82B28$a82B44$2msc 701 $aRivasseau$b Vincent$f1955-$053781 701 $aSeiringer$b Robert$0518175 701 $aSolovej$b Jan Philip$0518176 701 $aSpencer$b Thomas$f1946-$01757557 701 $aGiuliani$b Alessandro$0229525 701 $aMastropietro$b Vieri$01725171 701 $aJakob Yngvason$01757558 712 12$aC.I.M.E. Summer School$f(2010 :$eCetraro, Italy) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484006803321 996 $aQuantum many body systems$94195445 997 $aUNINA