LEADER 03818nam 22007335 450 001 9910483982303321 005 20200705130606.0 010 $a3-319-24486-8 024 7 $a10.1007/978-3-319-24486-0 035 $a(CKB)4340000000001130 035 $a(SSID)ssj0001584830 035 $a(PQKBManifestationID)16265136 035 $a(PQKBTitleCode)TC0001584830 035 $a(PQKBWorkID)14866280 035 $a(PQKB)11134392 035 $a(DE-He213)978-3-319-24486-0 035 $a(MiAaPQ)EBC5586970 035 $a(Au-PeEL)EBL5586970 035 $a(OCoLC)932169295 035 $a(PPN)19052863X 035 $a(EXLCZ)994340000000001130 100 $a20151003d2015 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAlgorithmic Learning Theory $e26th International Conference, ALT 2015, Banff, AB, Canada, October 4-6, 2015, Proceedings /$fedited by Kamalika Chaudhuri, CLAUDIO GENTILE, Sandra Zilles 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (XVII, 395 p. 26 illus. in color.) 225 1 $aLecture Notes in Artificial Intelligence ;$v9355 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-24485-X 327 $aInductive inference -- Learning from queries, teaching complexity -- Computational learning theory and algorithms -- Statistical learning theory and sample complexity -- Online learning -- Stochastic optimization -- Kolmogorov complexity, algorithmic information theory. 330 $aThis book constitutes the proceedings of the 26th International Conference on Algorithmic Learning Theory, ALT 2015, held in Banff, AB, Canada, in October 2015, and co-located with the 18th International Conference on Discovery Science, DS 2015. The 23 full papers presented in this volume were carefully reviewed and selected from 44 submissions. In addition the book contains 2 full papers summarizing the invited talks and 2 abstracts of invited talks. The papers are organized in topical sections named: inductive inference; learning from queries, teaching complexity; computational learning theory and algorithms; statistical learning theory and sample complexity; online learning, stochastic optimization; and Kolmogorov complexity, algorithmic information theory. 410 0$aLecture Notes in Artificial Intelligence ;$v9355 606 $aArtificial intelligence 606 $aComputers 606 $aData mining 606 $aPattern perception 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aTheory of Computation$3https://scigraph.springernature.com/ontologies/product-market-codes/I16005 606 $aData Mining and Knowledge Discovery$3https://scigraph.springernature.com/ontologies/product-market-codes/I18030 606 $aPattern Recognition$3https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 615 0$aArtificial intelligence. 615 0$aComputers. 615 0$aData mining. 615 0$aPattern perception. 615 14$aArtificial Intelligence. 615 24$aTheory of Computation. 615 24$aData Mining and Knowledge Discovery. 615 24$aPattern Recognition. 676 $a006.3 702 $aChaudhuri$b Kamalika$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aGENTILE$b CLAUDIO$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aZilles$b Sandra$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483982303321 996 $aAlgorithmic Learning Theory$9771965 997 $aUNINA