LEADER 02508nam 2200661Ia 450 001 9910483941203321 005 20200520144314.0 010 $a9786613569769 010 $a9781280391842 010 $a1280391847 010 $a9783642146060 010 $a3642146066 024 7 $a10.1007/978-3-642-14606-0 035 $a(CKB)2670000000045334 035 $a(SSID)ssj0000449935 035 $a(PQKBManifestationID)11288259 035 $a(PQKBTitleCode)TC0000449935 035 $a(PQKBWorkID)10434354 035 $a(PQKB)11349404 035 $a(DE-He213)978-3-642-14606-0 035 $a(MiAaPQ)EBC3065715 035 $a(PPN)149027095 035 $a(EXLCZ)992670000000045334 100 $a20100927d2010 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMorrey and Campanato meet Besov, Lizorkin and Triebel /$fWen Yuan, Winfried Sickel, Dachun Yang 205 $a1st ed. 2010. 210 $aBerlin ;$aHeidelberg $cSpringer-Verlag$dc2010 215 $a1 online resource (XII, 288 p.) 225 1 $aLecture notes in mathematics,$x1617-9692 ;$v2005 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783642146053 311 08$a3642146058 320 $aIncludes bibliographical references and index. 330 $aDuring the last 60 years the theory of function spaces has been a subject of growing interest and increasing diversity. Based on three formally different developments, namely, the theory of Besov and Triebel-Lizorkin spaces, the theory of Morrey and Campanato spaces and the theory of Q spaces, the authors develop a unified framework for all of these spaces. As a byproduct, the authors provide a completion of the theory of Triebel-Lizorkin spaces when p = ?. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v2005. 606 $aFunction spaces 606 $aHomogeneous spaces 606 $aMultipliers (Mathematical analysis) 615 0$aFunction spaces. 615 0$aHomogeneous spaces. 615 0$aMultipliers (Mathematical analysis) 676 $a515.73 686 $a510$2GyFmDB 700 $aYuan$b Wen$0478948 701 $aSickel$b Winfried$f1954-$0509445 701 $aYang$b Dachun$f1963-$0479675 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483941203321 996 $aMorrey and Campanato meet Besov, Lizorkin and Triebel$9769617 997 $aUNINA