LEADER 03994nam 22006615 450 001 9910483908603321 005 20200704125529.0 010 $a3-540-32454-2 024 7 $a10.1007/b11545989 035 $a(CKB)1000000000232543 035 $a(DE-He213)978-3-540-32454-6 035 $a(SSID)ssj0000318805 035 $a(PQKBManifestationID)11241199 035 $a(PQKBTitleCode)TC0000318805 035 $a(PQKBWorkID)10311058 035 $a(PQKB)10350130 035 $a(MiAaPQ)EBC5591204 035 $a(MiAaPQ)EBC4975893 035 $a(Au-PeEL)EBL4975893 035 $a(CaONFJC)MIL140401 035 $a(OCoLC)1024244958 035 $a(PPN)123097061 035 $a(EXLCZ)991000000000232543 100 $a20100805d2006 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematical Foundation of Turbulent Viscous Flows $eLectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1-5, 2003 /$fby Peter Constantin, Giovanni Gallavotti, Alexandre V. Kazhikhov, Yves Meyer, Seiji Ukai ; edited by Marco Cannone, Tetsuro Miyakawa 205 $a1st ed. 2006. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2006. 215 $a1 online resource (IX, 264 p.) 225 1 $aC.I.M.E. Foundation Subseries ;$v1871 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-28586-5 320 $aIncludes bibliographical references. 330 $aFive leading specialists reflect on different and complementary approaches to fundamental questions in the study of the Fluid Mechanics and Gas Dynamics equations. Constantin presents the Euler equations of ideal incompressible fluids and discusses the blow-up problem for the Navier-Stokes equations of viscous fluids, describing some of the major mathematical questions of turbulence theory. These questions are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations that is explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on several nonlinear evolution equations - in particular Navier-Stokes - and some related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, whenever it is localized in space or in time variable. Ukai presents the asymptotic analysis theory of fluid equations. He discusses the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving the compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers. 410 0$aC.I.M.E. Foundation Subseries ;$v1871 606 $aPartial differential equations 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aPartial differential equations. 615 14$aPartial Differential Equations. 676 $a532.58 700 $aConstantin$b Peter$4aut$4http://id.loc.gov/vocabulary/relators/aut$0338209 702 $aGallavotti$b Giovanni$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aKazhikhov$b Alexandre V$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aMeyer$b Yves$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aUkai$b Seiji$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aCannone$b Marco$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aMiyakawa$b Tetsuro$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483908603321 996 $aMathematical foundation of turbulent viscous flows$9230750 997 $aUNINA