LEADER 05402nam 2200589 450 001 9910483851303321 005 20240226150254.0 010 $a3-030-71625-2 035 $a(CKB)4100000011912119 035 $a(MiAaPQ)EBC6578605 035 $a(Au-PeEL)EBL6578605 035 $a(OCoLC)1250089285 035 $a(PPN)255296185 035 $a(EXLCZ)994100000011912119 100 $a20211213d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHigh performance simulation for industrial paint shop applications /$fKevin Verma, Robert Wille 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$dŠ2021 215 $a1 online resource (145 pages) 311 $a3-030-71624-4 327 $aIntro -- Preface -- Contents -- Part I Introduction and Background -- 1 Introduction -- -- 2 Background -- 2.1 Computational Fluid Dynamics -- 2.1.1 Fundamentals -- 2.1.2 Governing Equations -- 2.1.3 Discretization Techniques -- 2.1.3.1 Grid-Based Methods -- 2.1.3.2 Particle-Based Methods -- 2.2 High Performance Computing -- 2.2.1 Fundamentals -- 2.2.2 Shared Memory Parallelism -- 2.2.3 Distributed Memory Parallelism -- 2.2.4 General-Purpose Computing on Graphics Processing Units -- 2.3 Automotive Paint Shop -- 2.3.1 Overview -- 2.3.2 Challenges -- Part II Grid-Based Methods -- 3 Overview -- 3.1 Finite Difference Method -- 3.1.1 Formulation -- 3.1.2 Grid Discretization -- 3.2 Electrophoretic Deposition Coatings -- 4 Simulation of Electrophoretic Deposition Coatings -- 4.1 Background -- 4.1.1 State of the Art -- 4.1.2 Formulation -- 4.2 General Idea -- 4.2.1 Numerical Modeling of EPD -- 4.2.2 Grid Discretization -- 4.3 Simulation of EPD Coatings -- 4.3.1 Implementation of Numerical Model -- 4.3.2 Overset Grid Implementation -- 4.3.2.1 Grid ?16h -- 4.3.2.2 Grid ?8h -- 4.3.2.3 Grid ?2h -- 4.3.2.4 Grid ?h -- 4.3.2.5 Discussion and Resulting Overall Algorithm -- 4.4 Experimental Evaluations -- 4.4.1 Validation with Analytical Data -- 4.4.2 Validation with Industrial Data -- 4.4.3 Performance Discussion -- 4.5 Summary -- Part III Volumetric Decomposition Methods -- 5 Overview -- 5.1 Fundamentals -- 5.2 Drawback -- 6 Volumetric Decomposition on Shared Memory Architectures -- 6.1 Background -- 6.1.1 State of the Art -- 6.1.2 Basic Architecture -- 6.2 Parallel Simulation of Electrophoretic Deposition -- 6.2.1 Outer Parallel Layer -- 6.2.2 Inner Parallel Layer -- 6.2.2.1 Identifying Critical Vertices -- 6.2.2.2 Constructing the Volume Decomposition -- 6.2.2.3 Integrating Bottlenecks -- 6.3 Experimental Evaluations. 327 $a6.3.1 Speedup for the Reeb Graph Construction -- 6.3.2 Speedup for the Entire Simulation -- 6.4 Summary -- 7 Volumetric Decomposition on Distributed Memory Architectures -- 7.1 Basic Architecture -- 7.2 Implementation of the Distributed Algorithm -- 7.2.1 Workload Distribution -- 7.2.2 Memory Optimization -- 7.2.3 Load Balancing -- 7.3 Experimental Evaluations -- 7.3.1 Test Environment and Considered Data Set -- 7.3.2 Speedup in the Reeb Graph Construction -- 7.3.3 Speedup in the Entire Simulation -- 7.4 Summary -- Part IV Particle-Based Methods -- 8 Overview -- 8.1 SPH Fundamentals -- 8.1.1 Formulation -- 8.1.2 Internal Forces -- 8.1.3 External Forces -- 8.2 SPH Variants -- 8.2.1 Basic Variants -- 8.2.2 Predictive-Corrective Incompressible SPH -- 8.3 SPH and High Performance Computing -- 8.3.1 CPU Parallelization -- 8.3.2 GPU Parallelization -- 9 SPH on Multi-GPU Architectures -- 9.1 Background -- 9.1.1 Basic Architecture -- 9.1.2 Motivation -- 9.2 Advanced Load Balancing -- 9.2.1 General Idea -- 9.2.2 Using Internal Cache -- 9.2.3 Using Pointers -- 9.3 Experimental Evaluations -- 9.3.1 Experimental Setup -- 9.3.2 Dam Break Simulation -- 9.3.3 Spray Wash Simulation -- 9.4 Summary -- 10 SPH Variants on Multi-GPU Architectures -- 10.1 Background -- 10.2 Distributed Multi-GPU Architecture -- 10.3 Optimization Techniques -- 10.3.1 Load Balancing -- 10.3.2 Overlapping Memory Transfers -- 10.3.3 Optimizing Particle Data Representation -- 10.3.4 Optimizing Exchange of Halos -- 10.4 Experimental Evaluations -- 10.4.1 Experimental Setup -- 10.4.2 Dam Break Simulation -- 10.4.3 Water Splashing Simulation -- 10.5 Summary -- Part V Conclusion -- 11 Conclusion -- References -- Index. 606 $aFluid mechanics$xComputer simulation 606 $aCoating processes$xComputer simulation 606 $aHigh performance computing 606 $aCālcul intensiu (Informātica)$2thub 606 $aMecānica de fluids$2thub 606 $aSuperfícies (Tecnologia)$2thub 606 $aSimulaciķ per ordinador$2thub 608 $aLlibres electrōnics$2thub 615 0$aFluid mechanics$xComputer simulation. 615 0$aCoating processes$xComputer simulation. 615 0$aHigh performance computing. 615 7$aCālcul intensiu (Informātica) 615 7$aMecānica de fluids 615 7$aSuperfícies (Tecnologia) 615 7$aSimulaciķ per ordinador 676 $a620.106 700 $aVerma$b Kevin$01069232 702 $aWille$b Robert 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483851303321 996 $aHigh performance simulation for industrial paint shop applications$92555027 997 $aUNINA