LEADER 03210nam 2200565Ia 450 001 9910483845203321 005 20200520144314.0 010 $a3-642-28285-7 024 7 $a10.1007/978-3-642-28285-0 035 $a(CKB)3400000000085195 035 $a(SSID)ssj0000679708 035 $a(PQKBManifestationID)11368133 035 $a(PQKBTitleCode)TC0000679708 035 $a(PQKBWorkID)10625223 035 $a(PQKB)11071371 035 $a(DE-He213)978-3-642-28285-0 035 $a(MiAaPQ)EBC3070604 035 $a(PPN)165085495 035 $a(EXLCZ)993400000000085195 100 $a20120121d2012 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aDegenerate nonlinear diffusion equations /$fAngelo Favini, Gabriela Marinoschi 205 $a1st ed. 2012. 210 $aBerlin ;$aHeidelberg $cSpringer$dc2012 215 $a1 online resource (XXI, 143 p. 12 illus., 9 illus. in color.) 225 1 $aLecture notes in mathematics ;$v2049 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-28284-9 320 $aIncludes bibliographical references (p. 135-139) and index. 327 $a1 Parameter identification in a parabolic-elliptic degenerate problem -- 2 Existence for diffusion degenerate problems -- 3 Existence for nonautonomous parabolic-elliptic degenerate diffusion Equations -- 4 Parameter identification in a parabolic-elliptic degenerate problem. 330 $aThe aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v2049. 606 $aBurgers equation 606 $aDegenerate differential equations 615 0$aBurgers equation. 615 0$aDegenerate differential equations. 676 $a515.3534 700 $aFavini$b A$g(Angelo),$f1946-$056805 701 $aMarinoschi$b Gabriela$0517203 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483845203321 996 $aDegenerate nonlinear diffusion equations$9849772 997 $aUNINA