LEADER 14389nam 2200973 450 001 9910139621003321 005 20230125233816.0 010 $a1-283-20442-8 010 $a9786613204424 010 $a1-119-97358-9 010 $a1-61344-505-9 010 $a1-119-97359-7 024 7 $a10.1002/9781119973584 035 $a(CKB)2550000000041276 035 $a(EBL)693312 035 $a(SSID)ssj0000535431 035 $a(PQKBManifestationID)11965745 035 $a(PQKBTitleCode)TC0000535431 035 $a(PQKBWorkID)10522090 035 $a(PQKB)10845016 035 $a(CaBNVSL)mat08040233 035 $a(IDAMS)0b00006485f0e845 035 $a(IEEE)8040233 035 $a(OCoLC)746324281 035 $a(MiAaPQ)EBC693312 035 $a(PPN)26090645X 035 $a(EXLCZ)992550000000041276 100 $a20171024d2008 uy 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aCooperative networking /$f[edited by] Mohammad Obaidat, Sudip Misra 210 1$aChichester, West Sussex, U.K. ;$cWiley,$d2011. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2011] 215 $a1 online resource (354 p.) 300 $aDescription based upon print version of record. 311 $a0-470-74915-6 320 $aIncludes bibliographical references and index. 327 $aAbout the Editors xiii -- List of Contributors xvii -- 1 Introduction 1 / Mohammad S. Obaidat and Sudip Misra -- 1.1 Major Features of the Book 4 -- 1.2 Target Audience 4 -- 1.3 Supplementary Resources 5 -- 1.4 Acknowledgements 5 -- 2 Fundamentals and Issues with Cooperation in Networking 7 / Mohammad S. Obaidat and Tarik Guelzim -- 2.1 Introduction 7 -- 2.2 Fundamentals of Cooperating Networks 7 -- 2.2.1 Cooperative Adhoc Network Services 8 -- 2.2.2 Cooperative Relaying Network Service 13 -- 2.3 Issues and Security Flaws with Cooperating Networks: -- Wireless Sensor Networks Case Study 15 -- 2.3.1 Limitations in Mobile Ad hoc Networks 16 -- 2.4 Conclusions 19 -- References 19 -- 3 To Cooperate or Not to Cooperate? That is the Question! 21 / Mohamed H. Ahmed and Salama S. Ikki -- 3.1 Introduction 21 -- 3.2 Overview of Cooperative-Diversity Systems 22 -- 3.2.1 Relaying Techniques 22 -- 3.2.2 Combining Techniques 23 -- 3.2.3 Other Cooperating Techniques 24 -- 3.3 Benefits of Cooperative-Diversity Systems 25 -- 3.3.1 Signal-Quality Improvement 25 -- 3.3.2 Reduced Power 28 -- 3.3.3 Better Coverage 28 -- 3.3.4 Capacity Gain 28 -- 3.4 Major Challenges of Cooperative-Diversity Systems 28 -- 3.4.1 Resources Over-Utilization 28 -- 3.4.2 Additional Delay 29 -- 3.4.3 Complexity 30 -- 3.4.4 Unavailability of Cooperating Nodes 32 -- 3.4.5 Security Threats 32 -- 3.5 Discussion and Conclusion 32 -- References 33 -- 4 Cooperation in Wireless Ad Hoc and Sensor Networks 35 / J. Barbancho, D. Cascado, J. L. Sevillano, C. Leƒon, A. Linares and F. J. Molina -- 4.1 Introduction 35 -- 4.2 Why Could Cooperation in WAdSN be Useful? 36 -- 4.2.1 Time Synchronization, Localization and Calibration 36 -- 4.2.2 Routing 41 -- 4.2.3 Data Aggregation and Fusion 43 -- 4.3 Research Directions for Cooperation in WAdSN 45 -- 4.3.1 Middleware for WAdSN 46 -- 4.3.2 Multi-Agent Systems in WAdSN 48 -- 4.3.3 Artificial Neural Networks in WAdSN 50 -- 4.4 Final Remarks 53 -- 4.5 Acknowledgements 53 -- References 53. 327 $a5 Cooperation in Autonomous Vehicular Networks 57 / Sidi Mohammed Senouci, Abderrahim Benslimane and Hassnaa Moustafa -- 5.1 Introduction 57 -- 5.2 Overview on Vehicular Networks 58 -- 5.3 Cooperation at Different OSI Layers 59 -- 5.3.1 Cooperation at Lower Layers 59 -- 5.3.2 Cooperation at Network Layer 60 -- 5.3.3 Security and Authentication versus Cooperation 67 -- 5.3.4 Cooperation at Upper Layers 69 -- 5.4 Conclusion 73 -- References 73 -- 6 Cooperative Overlay Networking for Streaming Media Content 77 / F. Wang, J. Liu and K. Wu -- 6.1 Introduction 77 -- 6.2 Architectural Choices for Streaming Media Content over the Internet 78 -- 6.2.1 Router-Based Architectures: IP Multicast 79 -- 6.2.2 Architectures with Proxy Caching 80 -- 6.2.3 Peer-to-Peer Architectures 81 -- 6.3 Peer-to-Peer Media Streaming 82 -- 6.3.1 Comparisons with Other Peer-to-Peer Applications 82 -- 6.3.2 Design Issues 83 -- 6.3.3 Approaches for Overlay Construction 83 -- 6.4 Overview of mTreebone 85 -- 6.4.1 Treebone: A Stable Tree-Based Backbone 85 -- 6.4.2 Mesh: An Adaptive Auxiliary Overlay 86 -- 6.5 Treebone Construction and Optimization 87 -- 6.5.1 Optimal Stable Node Identification 87 -- 6.5.2 Treebone Bootstrapping and Evolution 88 -- 6.5.3 Treebone Optimization 89 -- 6.6 Collaborative Mesh-Tree Data Delivery 91 -- 6.6.1 Seamless Push/Pull Switching 91 -- 6.6.2 Handling Host Dynamics 91 -- 6.7 Performance Evaluation 92 -- 6.7.1 Large-Scale Simulations 92 -- 6.7.2 PlanetLab-Based Experiments 94 -- 6.8 Conclusion and Future Work 98 -- References 98 -- 7 Cooperation in DTN-Based Network Architectures 101 / Vasco N. G. J. Soares and Joel J. P. C. Rodrigues -- 7.1 Introduction 101 -- 7.2 Delay-Tolerant Networks 102 -- 7.2.1 DTN Application Domains 103 -- 7.2.2 Cooperation in Delay-Tolerant Networks 103 -- 7.3 Vehicular Delay-Tolerant Networks 106 -- 7.3.1 Cooperation in Vehicular-Delay Tolerant Networks 106 -- 7.3.2 Performance Assessment of Node Cooperation 108 -- 7.4 Conclusions 112 -- 7.5 Acknowledgements 113. 327 $aReferences 113 -- 8 Access Selection and Cooperation in Ambient Networks 117 / Ram'on Agu?ero -- 8.1 Leveraging the Cooperation in Heterogeneous Wireless Networks 117 -- 8.2 The Ambient Networks Philosophy 118 -- 8.2.1 Generic Link Layer 120 -- 8.2.2 Management of Heterogeneous Wireless Resources 120 -- 8.2.3 Additional Functional Entities 121 -- 8.2.4 Multi-Access Functions and Procedures 122 -- 8.3 Related Work 125 -- 8.4 Outlook 125 -- 8.4.1 Cognition 125 -- 8.4.2 Mesh Topologies 127 -- 8.5 Conclusions 127 -- References 128 -- 9 Cooperation in Intrusion Detection Networks 133 / Carol Fung and Raouf Boutaba -- 9.1 Overview of Network Intrusions 133 -- 9.1.1 Single-Host Intrusion and Malware 133 -- 9.1.2 Distributed Attacks and Botnets 134 -- 9.1.3 Cooperative Attacks and Phishing 134 -- 9.2 Intrusion Detection Systems 135 -- 9.2.1 Signature-Based and Anomaly-Based IDSs 135 -- 9.2.2 Host-Based and Network-Based IDSs 135 -- 9.3 Cooperation in Intrusion Detection Networks 136 -- 9.3.1 Cooperation Topology 136 -- 9.3.2 Cooperation Scope 137 -- 9.3.3 Specialization 137 -- 9.3.4 Cooperation Technologies and Algorithms 137 -- 9.3.5 Taxonomy 138 -- 9.4 Selected Intrusion Detection Networks 139 -- 9.4.1 Indra 139 -- 9.4.2 DOMINO 139 -- 9.4.3 DShield 140 -- 9.4.4 NetShield 140 -- 9.4.5 Gossip 141 -- 9.4.6 Worminator 142 -- 9.4.7 ABDIAS 142 -- 9.4.8 CRIM 142 -- 9.4.9 HBCIDS 143 -- 9.4.10 ALPACAS 143 -- 9.4.11 CDDHT 143 -- 9.4.12 SmartScreen Filter 143 -- 9.4.13 FFCIDN 144 -- 9.5 Open Challenges and Future Directions 144 -- 9.6 Conclusion 144 -- References 144 -- 10 Cooperation Link Level Retransmission in Wireless Networks 147 / Mehrdad Dianati, Xuemin (Sherman) Shen and Kshirasagar Naik -- 10.1 Introduction 147 -- 10.2 Background 149 -- 10.2.1 Modeling of Fading Channels 149 -- 10.2.2 Automatic Repeat Request 152 -- 10.3 System Model 154 -- 10.4 Protocol Model 155 -- 10.5 Node Cooperative SW Scheme 156 -- 10.6 Performance Analysis 157 -- 10.7 Delay Analysis 164 -- 10.8 Verification of Analytical Models 168. 327 $a10.8.1 Throughput 169 -- 10.8.2 Average Delay and Delay Jitter 171 -- 10.9 Discussion of the Related Works 172 -- 10.10 Summary 174 -- 10.11 Acknowledgement 174 -- References 175 -- 11 Cooperative Inter-Node and Inter-Layer Optimization of Network Protocols 177 / D. Kliazovich, F. Granelli and N. L. S. da Fonseca -- 11.1 Introduction 177 -- 11.2 A Framework for Cooperative Configuration and Optimization 178 -- 11.2.1 Tuning TCP/IP Parameters 178 -- 11.2.2 Cooperative Optimization Architecture 179 -- 11.3 Cooperative Optimization Design 181 -- 11.3.1 Inter-Layer Cooperative Optimization 181 -- 11.3.2 Inter-Node Cooperative Optimization 183 -- 11.4 A Test Case: TCP Optimization Using a Cooperative Framework 184 -- 11.4.1 Implementation 184 -- 11.4.2 Inter-Layer Cognitive Optimization 186 -- 11.4.3 Inter-Node Cognitive Optimization 187 -- 11.5 Conclusions 189 -- References 189 -- 12 Cooperative Network Coding 191 / H. Rashvand, C. Khirallah, V. Stankovic and L. Stankovic -- 12.1 Introduction 191 -- 12.2 Network Coding Concept 192 -- 12.2.1 Example 192 -- 12.3 Cooperative Relay 195 -- 12.4 Cooperation Strategies 196 -- 12.4.1 Performance Measures 197 -- 12.5 Cooperative Network Coding 206 -- 12.6 Conclusions 214 -- References 214 -- 13 Cooperative Caching for Chip Multiprocessors 217 / J. Chang, E. Herrero, R. Canal and G. Sohi -- 13.1 Caching and Chip Multiprocessors 217 -- 13.1.1 Caching Background 217 -- 13.1.2 CMP (Chip Multiprocessor) 218 -- 13.1.3 CMP Caching Challenges 218 -- 13.2 Cooperative Caching and CMP Caching 220 -- 13.2.1 Motivation for Cooperative Caching 220 -- 13.2.2 The Unique Aspects of Cooperative Caching 220 -- 13.2.3 CMP Cache Partitioning Schemes 225 -- 13.2.4 A Taxonomy of CMP Caching Techniques 226 -- 13.3 CMP Cooperative Caching Framework 226 -- 13.3.1 CMP Cooperative Caching Framework 227 -- 13.3.2 CC Mechanisms 229 -- 13.3.3 CC Implementations 234 -- 13.3.4 CC for Large Scale CMPs 241 -- 13.3.5 Distributed Cooperative Caching 243 -- 13.3.6 Summary 249. 327 $a13.4 CMP Cooperative Caching Applications 251 -- 13.4.1 CMP Cooperative Caching for Latency Reduction 252 -- 13.4.2 CMP Cooperative Caching for Adaptive Repartitioning 259 -- 13.4.3 CMP Cooperative Caching for Performance Isolation 262 -- 13.5 Summary 269 -- References 270 -- 14 Market-Oriented Resource Management and Scheduling: A Taxonomy and Survey 277 / Saurabh Kumar Garg and Rajkumar Buyya -- 14.1 Introduction 277 -- 14.2 Overview of Utility Grids and Preliminaries 277 -- 14.3 Requirements 279 -- 14.3.1 Consumer Side Requirements 279 -- 14.3.2 Resource Provider Side Requirements 280 -- 14.3.3 Market Exchange Requirements 280 -- 14.4 Utility Grid Infrastructural Components 282 -- 14.5 Taxonomy of Market-Oriented Scheduling 283 -- 14.5.1 Market Model 284 -- 14.5.2 Allocation Decision 288 -- 14.5.3 Participant Focus 288 -- 14.5.4 Application Type 288 -- 14.5.5 Allocation Objective 289 -- 14.6 Survey of Grid Resource Management Systems 289 -- 14.6.1 Survey of Market-Oriented Systems 289 -- 14.6.2 System-Oriented Schedulers 296 -- 14.7 Discussion and Gap Analysis 300 -- 14.7.1 Scheduling Mechanisms 300 -- 14.7.2 Market Based Systems 301 -- 14.8 Summary 302 -- References 303 -- Glossary 307 -- Index 319. 330 $aThis book focuses on the latest trends and research results in Cooperative Networking This book discusses the issues involved in cooperative networking, namely, bottleneck resource management, resource utilization, servers and content, security, and so on. In addition, the authors address instances of cooperation in nature which actively encourage the development of cooperation in telecommunication networks. Following an introduction to the fundamentals and issues surrounding cooperative networking, the book addresses models of cooperation, inspirations of successful cooperation from nature and society, cooperation in networking (for e.g. Peer-to-Peer, wireless ad-hoc and sensor, client-server, and autonomous vehicular networks), cooperation and ambient networking, cooperative caching, cooperative networking for streaming media content, optimal node-task allocation, heterogeneity issues in cooperative networking, cooperative search in networks, and security and privacy issues with cooperative networking. It contains contributions from high profile researchers and is edited by leading experts in this field. Key Features: * Focuses on higher layer networking * Addresses the latest trends and research results * Covers fundamental concepts, models, advanced topics and performance issues in cooperative networking * Contains contributions from leading experts in the field * Provides an insight into the future direction of cooperative networking * Includes an accompanying website containing PowerPoint slides and a glossary of terms (www.wiley.com/go/obaidat_cooperative) This book is an ideal reference for researchers and practitioners working in the field. It will also serve as an excellent textbook for graduate and senior undergraduate courses in computer science, computer engineering, electrical engineering, software engineering, and information engineering and science. 606 $aAd hoc networks (Computer networks) 606 $aInternetworking (Telecommunication) 606 $aInternetworking (Telecommunication) 606 $aMIMO systems 606 $aPeer-to-peer architecture (Computer networks) 606 $aRadio relay systems 606 $aWireless communication systems 606 $aInternetworking (Telecommunication) 606 $aPeer-to-peer architecture (Computer networks) 606 $aAd hoc networks (Computer networks) 606 $aElectrical & Computer Engineering$2HILCC 606 $aEngineering & Applied Sciences$2HILCC 606 $aTelecommunications$2HILCC 615 4$aAd hoc networks (Computer networks). 615 4$aInternetworking (Telecommunication). 615 4$aInternetworking (Telecommunication). 615 4$aMIMO systems. 615 4$aPeer-to-peer architecture (Computer networks). 615 4$aRadio relay systems. 615 4$aWireless communication systems. 615 0$aInternetworking (Telecommunication) 615 0$aPeer-to-peer architecture (Computer networks) 615 0$aAd hoc networks (Computer networks) 615 7$aElectrical & Computer Engineering 615 7$aEngineering & Applied Sciences 615 7$aTelecommunications 676 $a004.6 676 $a621.384 700 $aObaidat$b Mohammad S$0523170 701 $aObaidat$b Mohammad S$g(Mohammad Salameh),$f1952-$0523170 701 $aMisra$b Sudip$0965918 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910139621003321 996 $aCooperative networking$92211380 997 $aUNINA LEADER 03172nam 22004813 450 001 9910158775603321 005 20230807220240.0 010 $a9781786250230 010 $a1786250233 035 $a(CKB)3810000000099033 035 $a(MiAaPQ)EBC4809442 035 $a(Au-PeEL)EBL4809442 035 $a(CaPaEBR)ebr11350068 035 $a(OCoLC)974591450 035 $a(Perlego)3017920 035 $a(EXLCZ)993810000000099033 100 $a20210901d2015 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDeep Battle In World War I 205 $a1st ed. 210 1$aSan Francisco :$cVerdun Press,$d2015. 210 4$d©2015. 215 $a1 online resource (28 pages) 327 $aIntro -- TABLE OF CONTENTS -- Abstract -- List of Illustrations -- THESIS -- MANUEVER WARFARE AND DEEP BATTLE -- ALLENBY'S VICTORY: THE BATTLE OF MEGIDDO -- THEORY TO PRACTICE -- CONCLUSION -- BIBLIOGRAPHY:. 330 8 $aManeuver Warfare Theory achieved major acceptance during the 1980's, emphasizing the conduct of simultaneous offensive operations throughout the depth of the battlefield. With the victory of Coalition forces during Operation DESERT STORM, the "deep battle" theory gained instant credibility and the emphasis on "joint" operations reached a fever pitch. Yet, too often analysts have only used the war in Kuwait to prove or refute these operational concepts. All theories require more than one case study to validate or nullify their precepts. Other historical examples need to be examined using the model of maneuver warfare to give greater support for this theory.While the First World War is often characterized by the futile attrition of the Western Front in France, many exceptional operational offensives were also conducted. The British September 1918 offensive in Palestine is a superb example of the proper application of combat forces at the operational level. General Edmund Allenby's use of regular army units, armored cars, cavalry, airpower and irregulars led to a major victory that hastened the collapse of Turkey and the Central Powers. Long before mechanized forces and maneuver theory had been developed, British Imperial forces executed an operational design stressing many elements of deep battle theory.By examining the British offensive using the paradigm of maneuver warfare, additional evidence can be generated to add credence to the theory. The importance of the synergistic effect of combat arms when applied jointly is also shown. Maneuver theory must be better understood if this paradigm is used to create doctrine for the employment of the Armed Forces of the United States. 517 $aDeep Battle In World War I 606 $aManeuver warfare 606 $aBattlefields 615 0$aManeuver warfare. 615 0$aBattlefields. 676 $a355.40933000000001 700 $aPovlock USN$b LCDR Paul A$01375332 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910158775603321 996 $aDeep Battle In World War I$93409667 997 $aUNINA LEADER 03333nam 22006975 450 001 9910483820403321 005 20250828140159.0 010 $a3-030-69774-6 024 7 $a10.1007/978-3-030-69774-7 035 $a(OCoLC)1241065903 035 $a(DE-He213)978-3-030-69774-7 035 $a(MiAaPQ)EBC6501102 035 $a(PPN)253859514 035 $a(CKB)4100000011781429 035 $a(EXLCZ)994100000011781429 100 $a20210225d2021 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplications of Computational Intelligence $eThird IEEE Colombian Conference, ColCACI 2020, Cali, Colombia, August 7-8, 2020, Revised Selected Papers /$fedited by Alvaro David Orjuela-Cañón, Jesus Lopez, Julián David Arias-Londoño, Juan Carlos Figueroa-García 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (XII, 175 p. 63 illus., 58 illus. in color.) 225 1 $aCommunications in Computer and Information Science,$x1865-0937 ;$v1346 311 08$a3-030-69773-8 327 $aEarth Sciences Applications -- Biomedical and Power Applications -- Alternative Proposals and its Applications. 330 $aThis book constitutes revised and extended selected papers of the Third IEEE Colombian Conference, ColCACI 2020, held in Cali, Colombia, August 2020. Due to the COVID-19 pandemic the conference was held online. The12 full papers presented were carefully reviewed and selected from 65 submissions. The papers are organized in topical sections on earth sciences applications; biomedical and power applications; alternative proposals and its applications. 410 0$aCommunications in Computer and Information Science,$x1865-0937 ;$v1346 606 $aArtificial intelligence 606 $aComputer engineering 606 $aComputer networks 606 $aSocial sciences$xData processing 606 $aEducation$xData processing 606 $aComputer vision 606 $aArtificial Intelligence 606 $aComputer Engineering and Networks 606 $aComputer Application in Social and Behavioral Sciences 606 $aComputers and Education 606 $aComputer Vision 615 0$aArtificial intelligence. 615 0$aComputer engineering. 615 0$aComputer networks. 615 0$aSocial sciences$xData processing. 615 0$aEducation$xData processing. 615 0$aComputer vision. 615 14$aArtificial Intelligence. 615 24$aComputer Engineering and Networks. 615 24$aComputer Application in Social and Behavioral Sciences. 615 24$aComputers and Education. 615 24$aComputer Vision. 676 $a006.3 702 $aOrjuela-Can?o?n$b Alvaro David$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLo?pez$b Jesu?s$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aArias-London?o$b Julia?n David$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aFigueroa-Garci?a$b Juan Carlos$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910483820403321 996 $aApplications of Computational Intelligence$92089766 997 $aUNINA