LEADER 03018nam 22005895 450 001 9910483778903321 005 20251204111033.0 010 $a3-030-63696-8 024 7 $a10.1007/978-3-030-63696-8 035 $a(CKB)4100000011781522 035 $a(DE-He213)978-3-030-63696-8 035 $a(MiAaPQ)EBC6511526 035 $a(Au-PeEL)EBL6511526 035 $a(OCoLC)1241449323 035 $a(PPN)254721257 035 $a(EXLCZ)994100000011781522 100 $a20210302d2021 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to Geometrically Nonlinear Continuum Dislocation Theory $eFE Implementation and Application on Subgrain Formation in Cubic Single Crystals Under Large Strains /$fby Christian B. Silbermann, Matthias Baitsch, Jörn Ihlemann 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (XIII, 94 p. 61 illus., 18 illus. in color.) 225 1 $aSpringerBriefs in Continuum Mechanics,$x2625-1337 300 $aIncludes index. 311 08$a3-030-63695-X 327 $aIntroduction -- Nonlinear kinematics of a continuously dislocated crystal -- Crystal kinetics and -thermodynamics -- Special cases included in the theory -- Geometrical linearization of the theory -- Variational formulation of the theory -- Numerical solution with the finite element method -- FE simulation results -- Possibilities of experimental validation -- Conclusions and Discussion -- Elements of Tensor Calculus and Tensor Analysis -- Solutions and algorithms for nonlinear plasticity. 330 $aThis book provides an introduction to geometrically non-linear single crystal plasticity with continuously distributed dislocations. A symbolic tensor notation is used to focus on the physics. The book also shows the implementation of the theory into the finite element method. Moreover, a simple simulation example demonstrates the capability of the theory to describe the emergence of planar lattice defects (subgrain boundaries) and introduces characteristics of pattern forming systems. Numerical challenges involved in the localization phenomena are discussed in detail. 410 0$aSpringerBriefs in Continuum Mechanics,$x2625-1337 606 $aMetals 606 $aContinuum mechanics 606 $aMetals and Alloys 606 $aContinuum Mechanics 615 0$aMetals. 615 0$aContinuum mechanics. 615 14$aMetals and Alloys. 615 24$aContinuum Mechanics. 676 $a548.842 676 $a530.14 700 $aSilbermann$b Christian B$0851983 702 $aBaitsch$b Matthias 702 $aIhlemann$b Jo?rn 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483778903321 996 $aIntroduction to geometrically nonlinear continuum dislocation theory$91902337 997 $aUNINA