LEADER 03040nam 22006375 450 001 9910483586003321 005 20251113202335.0 010 $a3-030-55215-2 024 7 $a10.1007/978-3-030-55215-2 035 $a(CKB)4100000011435812 035 $a(DE-He213)978-3-030-55215-2 035 $a(MiAaPQ)EBC6348314 035 $a(PPN)250220490 035 $a(EXLCZ)994100000011435812 100 $a20200910d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aProfinite Semigroups and Symbolic Dynamics /$fby Jorge Almeida, Alfredo Costa, Revekka Kyriakoglou, Dominique Perrin 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (IX, 278 p. 67 illus., 4 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v2274 311 08$a3-030-55214-4 330 $aThis book describes the relation between profinite semigroups and symbolic dynamics. Profinite semigroups are topological semigroups which are compact and residually finite. In particular, free profinite semigroups can be seen as the completion of free semigroups with respect to the profinite metric. In this metric, two words are close if one needs a morphism on a large finite monoid to distinguish them. The main focus is on a natural correspondence between minimal shift spaces (closed shift-invariant sets of two-sided infinite words) and maximal J-classes (certain subsets of free profinite semigroups). This correspondence sheds light on many aspects of both profinite semigroups and symbolic dynamics. For example, the return words to a given word in a shift space can be related to the generators of the group of the corresponding J-class. The book is aimed at researchers and graduate students in mathematics or theoretical computer science. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2274 606 $aGroup theory 606 $aComputer science$xMathematics 606 $aDiscrete mathematics 606 $aDynamical systems 606 $aMachine theory 606 $aGroup Theory and Generalizations 606 $aDiscrete Mathematics in Computer Science 606 $aDynamical Systems 606 $aFormal Languages and Automata Theory 615 0$aGroup theory. 615 0$aComputer science$xMathematics. 615 0$aDiscrete mathematics. 615 0$aDynamical systems. 615 0$aMachine theory. 615 14$aGroup Theory and Generalizations. 615 24$aDiscrete Mathematics in Computer Science. 615 24$aDynamical Systems. 615 24$aFormal Languages and Automata Theory. 676 $a512.2 676 $a512.2 700 $aAlmeida$b Jorge$01005289 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483586003321 996 $aProfinite semigroups and symbolic dynamics$92311010 997 $aUNINA