LEADER 03541nam 22005895 450 001 9910483467303321 005 20200705113858.0 010 $a3-030-34732-X 024 7 $a10.1007/978-3-030-34732-1 035 $a(CKB)4940000000158921 035 $a(MiAaPQ)EBC6005430 035 $a(DE-He213)978-3-030-34732-1 035 $a(PPN)242846300 035 $a(EXLCZ)994940000000158921 100 $a20200103d2020 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Dual of L?(X,L,?), Finitely Additive Measures and Weak Convergence $eA Primer /$fby John Toland 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (104 pages) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 311 $a3-030-34731-1 327 $a1 Introduction -- 2 Notation and Preliminaries -- 3 L? and its Dual -- 4 Finitely Additive Measures -- 5 G: 0-1 Finitely Additive Measures -- 6 Integration and Finitely Additive Measures -- 7 Topology on G -- 8 Weak Convergence in L?(X,L,?) -- 9 L?* when X is a Topological Space -- 10 Reconciling Representations -- References -- Index. 330 $aIn measure theory, a familiar representation theorem due to F. Riesz identifies the dual space Lp(X,L,?)* with Lq(X,L,?), where 1/p+1/q=1, as long as 1 ? p