LEADER 03964nam 22007095 450 001 9910483456803321 005 20230406033543.0 024 7 $a10.1007/b106453 035 $a(CKB)1000000000212851 035 $a(SSID)ssj0000319120 035 $a(PQKBManifestationID)11937706 035 $a(PQKBTitleCode)TC0000319120 035 $a(PQKBWorkID)10337293 035 $a(PQKB)11740043 035 $a(DE-He213)978-3-540-31955-9 035 $a(MiAaPQ)EBC3067723 035 $a(PPN)123092191 035 $a(EXLCZ)991000000000212851 100 $a20100924d2005 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aNetwork Analysis $eMethodological Foundations /$fedited by Ulrik Brandes, Thomas Erlebach 205 $a1st ed. 2005. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2005. 215 $a1 online resource (XII, 472 p.) 225 1 $aTheoretical Computer Science and General Issues,$x2512-2029 ;$v3418 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$aPrinted edition: 9783540249795 320 $aIncludes bibliographical references (p. [439]-466) and index. 327 $aFundamentals -- I Elements -- Centrality Indices -- Algorithms for Centrality Indices -- Advanced Centrality Concepts -- II Groups -- Local Density -- Connectivity -- Clustering -- Role Assignments -- Blockmodels -- Network Statistics -- Network Comparison -- Network Models -- Spectral Analysis -- Robustness and Resilience. 330 $a?Network? is a heavily overloaded term, so that ?network analysis? means different things to different people. Specific forms of network analysis are used in the study of diverse structures such as the Internet, interlocking directorates, transportation systems, epidemic spreading, metabolic pathways, the Web graph, electrical circuits, project plans, and so on. There is, however, a broad methodological foundation which is quickly becoming a prerequisite for researchers and practitioners working with network models. From a computer science perspective, network analysis is applied graph theory. Unlike standard graph theory books, the content of this book is organized according to methods for specific levels of analysis (element, group, network) rather than abstract concepts like paths, matchings, or spanning subgraphs. Its topics therefore range from vertex centrality to graph clustering and the evolution of scale-free networks. In 15 coherent chapters, this monograph-like tutorial book introduces and surveys the concepts and methods that drive network analysis, and is thus the first book to do so from a methodological perspective independent of specific application areas. 410 0$aTheoretical Computer Science and General Issues,$x2512-2029 ;$v3418 606 $aComputer science?Mathematics 606 $aDiscrete mathematics 606 $aComputer networks 606 $aArtificial intelligence?Data processing 606 $aAlgorithms 606 $aDiscrete Mathematics in Computer Science 606 $aComputer Communication Networks 606 $aDiscrete Mathematics 606 $aData Science 606 $aAlgorithms 615 0$aComputer science?Mathematics. 615 0$aDiscrete mathematics. 615 0$aComputer networks. 615 0$aArtificial intelligence?Data processing. 615 0$aAlgorithms. 615 14$aDiscrete Mathematics in Computer Science. 615 24$aComputer Communication Networks. 615 24$aDiscrete Mathematics. 615 24$aData Science. 615 24$aAlgorithms. 676 $a004.2/1 702 $aBrandes$b Ulrik$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aErlebach$b Thomas$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910483456803321 996 $aNetwork Analysis$9772830 997 $aUNINA