LEADER 03864nam 22006135 450 001 9910483428203321 005 20200707020936.0 010 $a3-030-22895-9 024 7 $a10.1007/978-3-030-22895-8 035 $a(CKB)4100000008747493 035 $a(MiAaPQ)EBC5838906 035 $a(DE-He213)978-3-030-22895-8 035 $z(PPN)258859210 035 $a(PPN)243770030 035 $a(EXLCZ)994100000008747493 100 $a20190724d2020 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Temporal Structure of Multimodal Communication $eTheory, Methods and Applications /$fedited by Laszlo Hunyadi, István Szekrényes 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (168 pages) 225 1 $aIntelligent Systems Reference Library,$x1868-4394 ;$v164 311 $a3-030-22894-0 327 $aLinguistic and Contextual Clues of Intentions and Perspectives in Human Communication -- The Teacher?s Body Communicates. Detection of Paraverbal Behaviour Patterns -- Is it Possible to Perform ?Liquefying? Actions in Conversational Analysis? The Detection of Structures in Indirect Observations -- Research Methods for Studying Daily Life: Experience Sampling and a Multilevel Approach to Study Time and Mood at Work. 330 $aThe general focus of this book is on multimodal communication, which captures the temporal patterns of behavior in various dialogue settings. After an overview of current theoretical models of verbal and nonverbal communication cues, it presents studies on a range of related topics: paraverbal behavior patterns in the classroom setting; a proposed optimal methodology for conversational analysis; a study of time and mood at work; an experiment on the dynamics of multimodal interaction from the observer?s perspective; formal cues of uncertainty in conversation; how machines can know we understand them; and detecting topic changes using neural network techniques. A joint work bringing together psychologists, communication scientists, information scientists and linguists, the book will be of interest to those working on a wide range of applications from industry to home, and from health to security, with the main goals of revealing, embedding and implementing a rich spectrum of information on human behavior. . 410 0$aIntelligent Systems Reference Library,$x1868-4394 ;$v164 606 $aComputational intelligence 606 $aArtificial intelligence 606 $aComputational linguistics 606 $aCognitive psychology 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aComputational Linguistics$3https://scigraph.springernature.com/ontologies/product-market-codes/N22000 606 $aCognitive Psychology$3https://scigraph.springernature.com/ontologies/product-market-codes/Y20060 615 0$aComputational intelligence. 615 0$aArtificial intelligence. 615 0$aComputational linguistics. 615 0$aCognitive psychology. 615 14$aComputational Intelligence. 615 24$aArtificial Intelligence. 615 24$aComputational Linguistics. 615 24$aCognitive Psychology. 676 $a410.285 676 $a006.35 702 $aHunyadi$b Laszlo$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSzekrényes$b István$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910483428203321 996 $aThe Temporal Structure of Multimodal Communication$92226080 997 $aUNINA