LEADER 03458nam 22007575 450 001 9910483384703321 005 20251113203453.0 010 $a9783642051364 010 $a3642051367 024 7 $a10.1007/978-3-642-05136-4 035 $a(CKB)2480000000000210 035 $a(SSID)ssj0000372680 035 $a(PQKBManifestationID)11252643 035 $a(PQKBTitleCode)TC0000372680 035 $a(PQKBWorkID)10441365 035 $a(PQKB)10435103 035 $a(DE-He213)978-3-642-05136-4 035 $a(MiAaPQ)EBC3064914 035 $a(PPN)14904822X 035 $a(EXLCZ)992480000000000210 100 $a20100715d2009 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aPartial Inner Product Spaces $eTheory and Applications /$fby J-P Antoine, Camillo Trapani 205 $a1st ed. 2009. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2009. 215 $a1 online resource (XX, 358 p. 11 illus.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1986 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783642051357 311 08$a3642051359 320 $aIncludes bibliographical references (p. 337-348) and index. 327 $aGeneral Theory: Algebraic Point of View -- General Theory: Topological Aspects -- Operators on PIP-Spaces and Indexed PIP-Spaces -- Examples of Indexed PIP-Spaces -- Refinements of PIP-Spaces -- Partial #x002A;-Algebras of Operators in a PIP-Space -- Applications in Mathematical Physics -- PIP-Spaces and Signal Processing. 330 $aPartial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1986 606 $aFunctional analysis 606 $aOperator theory 606 $aParticles (Nuclear physics) 606 $aQuantum field theory 606 $aComputer science$xMathematics 606 $aFunctional Analysis 606 $aOperator Theory 606 $aElementary Particles, Quantum Field Theory 606 $aMathematical Applications in Computer Science 615 0$aFunctional analysis. 615 0$aOperator theory. 615 0$aParticles (Nuclear physics) 615 0$aQuantum field theory. 615 0$aComputer science$xMathematics. 615 14$aFunctional Analysis. 615 24$aOperator Theory. 615 24$aElementary Particles, Quantum Field Theory. 615 24$aMathematical Applications in Computer Science. 676 $a515.7 700 $aAntoine$b Jean Pierre$0345551 701 $aTrapani$b C$g(Camillo)$0314921 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483384703321 996 $aPartial inner product spaces$9780482 997 $aUNINA