LEADER 04955nam 2200661 450 001 9910812752403321 005 20170822144447.0 010 $a1-4704-0413-3 035 $a(CKB)3360000000464996 035 $a(EBL)3114213 035 $a(SSID)ssj0000973217 035 $a(PQKBManifestationID)11616151 035 $a(PQKBTitleCode)TC0000973217 035 $a(PQKBWorkID)10959860 035 $a(PQKB)10527399 035 $a(MiAaPQ)EBC3114213 035 $a(RPAM)13639533 035 $a(PPN)195416996 035 $a(EXLCZ)993360000000464996 100 $a20150417h20042004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHomotopy equivalences of 3-manifolds and deformation theory of Kleinian groups /$fRichard D. Canary, Darryl McCullough 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2004. 210 4$dİ2004 215 $a1 online resource (238 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 172, Number 812 300 $a"Volume 172, Number 812 (first of 4 numbers)." 311 $a0-8218-3549-1 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""Preface""; ""Chapter 1. Introduction""; ""1.1. Motivation""; ""1.2. The main theorems for Haken 3-manifolds""; ""1.3. The main theorems for reducible 3-manifolds""; ""1.4. Examples""; ""Chapter 2. Johannson's Characteristic Submanifold Theory""; ""2.1. Fibered 3-manifolds""; ""2.2. Boundary patterns""; ""2.3. Admissible maps and mapping class groups""; ""2.4. Essential maps and useful boundary patterns""; ""2.5. The classical theorems""; ""2.6. Exceptional fibered 3-manifolds""; ""2.7. Vertical and horizontal surfaces and maps""; ""2.8. Fiber-preserving maps"" 327 $a""2.9. The characteristic submanifold""""2.10. Examples of characteristic submanifolds""; ""2.11. The Classification Theorem""; ""2.12. Miscellaneous topological results""; ""Chapter 3. Relative Compression Bodies and Cores""; ""3.1. Relative compression bodies""; ""3.2. Minimally imbedded relative compression bodies""; ""3.3. The maximal incompressible core""; ""3.4. Normally imbedded relative compression bodies""; ""3.5. The normal core and the useful core""; ""Chapter 4. Homotopy Types""; ""4.1. Homotopy equivalences preserve usefulness""; ""4.2. Finiteness of homotopy types"" 327 $a""Chapter 5. Pared 3-Manifolds""""5.1. Definitions and basic properties""; ""5.2. The topology of pared manifolds""; ""5.3. The characteristic submanifold of a pared manifold""; ""Chapter 6. Small 3-Manifolds""; ""6.1. Small manifolds and small pared manifolds""; ""6.2. Small pared homotopy types""; ""Chapter 7. Geometrically Finite Hyperbolic 3-Manifolds""; ""7.1. Basic definitions""; ""7.2. Quasiconformal deformation theory: a review""; ""7.3. The Parameterization Theorem""; ""Chapter 8. Statements of Main Theorems""; ""8.1. Statements of Main Topological Theorems"" 327 $a""8.2. Statements of Main Hyperbolic Theorem and Corollary""""8.3. Derivation of hyperbolic results""; ""Chapter 9. The Case When There Is a Compressible Free Side""; ""9.1. Algebraic lemmas""; ""9.2. The finite-index cases""; ""9.3. The infinite-index cases""; ""Chapter 10. The Case When the Boundary Pattern Is Useful""; ""10.1. The homomorphism I??""; ""10.2. Realizing homotopy equivalences of I-bundles""; ""10.3. Realizing homotopy equivalences of Seifert-fibered manifolds""; ""10.4. Proof of Main Topological Theorem 2""; ""Chapter 11. Dehn Flips"" 327 $a""Chapter 12. Finite Index Realization For Reducible 3-Manifolds""""12.1. Homeomorphisms of connected sums""; ""12.2. Reducible 3-manifolds with compressible boundary""; ""12.3. Reducible 3-manifolds with incompressible boundary""; ""Chapter 13. Epilogue""; ""13.1. More topology""; ""13.2. More geometry""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 172, Number 812. 517 3 $aHomotopy equivalences of three-manifolds and deformation theory of Kleinian groups 606 $aThree-manifolds (Topology) 606 $aHomotopy equivalences 606 $aLow-dimensional topology 606 $aKleinian groups 615 0$aThree-manifolds (Topology) 615 0$aHomotopy equivalences. 615 0$aLow-dimensional topology. 615 0$aKleinian groups. 676 $a514/.3 700 $aCanary$b Richard Douglas$0311099 702 $aMcCullough$b Darryl$f1951- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812752403321 996 $aHomotopy equivalences of 3-manifolds and deformation theory of Kleinian groups$93952139 997 $aUNINA LEADER 03289nam 22006735 450 001 9910483307903321 005 20251226195055.0 010 $a3-319-46379-9 024 7 $a10.1007/978-3-319-46379-7 035 $a(CKB)3710000000900955 035 $a(DE-He213)978-3-319-46379-7 035 $a(MiAaPQ)EBC6280891 035 $a(MiAaPQ)EBC5586516 035 $a(Au-PeEL)EBL5586516 035 $a(OCoLC)960952402 035 $a(PPN)196323029 035 $a(EXLCZ)993710000000900955 100 $a20160920d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgorithmic Learning Theory $e27th International Conference, ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings /$fedited by Ronald Ortner, Hans Ulrich Simon, Sandra Zilles 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XIX, 371 p. 21 illus.) 225 1 $aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v9925 311 08$a3-319-46378-0 327 $aError bounds, sample compression schemes -- Statistical learning, theory, evolvability -- Exact and interactive learning -- Complexity of teaching models -- Inductive inference -- Online learning -- Bandits and reinforcement learning -- Clustering. 330 $aThis book constitutes the refereed proceedings of the 27th International Conference on Algorithmic Learning Theory, ALT 2016, held in Bari, Italy, in October 2016, co-located with the 19th International Conference on Discovery Science, DS 2016. The 24 regular papers presented in this volume were carefully reviewed and selected from 45 submissions. In addition the book contains 5 abstracts of invited talks. The papers are organized in topical sections named: error bounds, sample compression schemes; statistical learning, theory, evolvability; exact and interactive learning; complexity of teaching models; inductive inference; online learning; bandits and reinforcement learning; and clustering. 410 0$aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v9925 606 $aArtificial intelligence 606 $aComputer science 606 $aData mining 606 $aPattern recognition systems 606 $aArtificial Intelligence 606 $aTheory of Computation 606 $aData Mining and Knowledge Discovery 606 $aAutomated Pattern Recognition 615 0$aArtificial intelligence. 615 0$aComputer science. 615 0$aData mining. 615 0$aPattern recognition systems. 615 14$aArtificial Intelligence. 615 24$aTheory of Computation. 615 24$aData Mining and Knowledge Discovery. 615 24$aAutomated Pattern Recognition. 676 $a005.1 702 $aOrtner$b Ronald$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSimon$b Hans Ulrich$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aZilles$b Sandra$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483307903321 996 $aAlgorithmic Learning Theory$9771965 997 $aUNINA