LEADER 02493nam 2200601Ia 450 001 9910483276903321 005 20200520144314.0 010 $a3-540-92847-2 024 7 $a10.1007/978-3-540-92847-8 035 $a(CKB)1000000000718094 035 $a(SSID)ssj0000318183 035 $a(PQKBManifestationID)11283540 035 $a(PQKBTitleCode)TC0000318183 035 $a(PQKBWorkID)10308958 035 $a(PQKB)10322723 035 $a(DE-He213)978-3-540-92847-8 035 $a(MiAaPQ)EBC3064148 035 $a(PPN)134130707 035 $a(EXLCZ)991000000000718094 100 $a20090102d2009 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aHydrodynamic limits of the Boltzmann equation /$fLaure Saint-Raymond 205 $a1st ed. 2009. 210 $aBerlin $cSpringer$dc2009 215 $a1 online resource (XII, 194 p. 9 illus.) 225 1 $aLecture notes in mathematics,$x0075-8434 ;$v1971 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-92846-4 320 $aIncludes bibliographical references (p. 181-186) and index. 327 $aThe Boltzmann equation and its formal hydrodynamic limits -- Mathematical tools for the derivation of hydrodynamic limits -- The incompressible Navier-Stokes limit -- The incompressible Euler limit -- The compressible Euler limit. 330 $aThe aim of this book is to present some mathematical results describing the transition from kinetic theory, and, more precisely, from the Boltzmann equation for perfect gases to hydrodynamics. Different fluid asymptotics will be investigated, starting always from solutions of the Boltzmann equation which are only assumed to satisfy the estimates coming from physics, namely some bounds on mass, energy and entropy. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1971. 606 $aMaxwell-Boltzmann distribution law 606 $aFluid dynamics$xMathematics 615 0$aMaxwell-Boltzmann distribution law. 615 0$aFluid dynamics$xMathematics. 676 $a532.5 686 $aMAT 352f$2stub 686 $aPHY 058f$2stub 686 $aPHY 220f$2stub 686 $aSI 850$2rvk 700 $aSaint-Raymond$b Laure$0472383 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483276903321 996 $aHydrodynamic limits of the Boltzmann equation$9230300 997 $aUNINA