LEADER 10789nam 2200541 450 001 9910483242303321 005 20211013134432.0 010 $a3-030-49991-X 035 $a(CKB)4100000011801749 035 $a(MiAaPQ)EBC6522089 035 $a(Au-PeEL)EBL6522089 035 $a(OCoLC)1243544706 035 $a(PPN)254724469 035 $a(EXLCZ)994100000011801749 100 $a20211013d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNano-bio-electronic, photonic and MEMS packaging /$fedited by C. P. Wong, Kyoung-Sik Moon, and Yi Li 205 $aSecond edition. 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$dİ2021 215 $a1 online resource (570 pages) $cillustrations 300 $aIncludes index. 311 $a3-030-49990-1 327 $aIntro -- Preface -- Contents -- Contributors -- Part I: Electronics (Electrical Interconnections and Thermal Management) -- Chapter 1: Some Nanomaterials for Microelectronics and Photonics Packaging -- 1.1 Introduction -- 1.1.1 Interfaces of Carbon Nanotubes (CNTs)/Substrates for Electrical and Thermal Interconnects -- 1.1.2 Tin/Silver Alloy Nanoparticle Pastes for Low-Temperature Lead-Free Interconnect Applications -- 1.1.3 Enhanced Electrical Properties of Anisotropically Conductive Adhesive with ? -Conjugated Molecular Wire Junctions for En... -- 1.1.4 Low-Stress and High-Thermal Conductive Underfill for Cu/Low-k Application -- 1.1.5 High-Dielectric Constant (k) Polymer Nanocomposites for Embedded Capacitor Applications -- 1.1.6 Bio-Mimetic Lotus Surface -- 1.1.7 Molecular Dynamic (MD) Simulations in Nanomaterial Study -- 1.2 Conclusive Remarks -- References -- Chapter 2: Nano-conductive Adhesives for Nano-electronics Interconnection -- 2.1 Introduction -- 2.2 Recent Advances on Nanoisotropic Conductive Adhesive (Nano-ICA) -- 2.2.1 ICAs with Silver Nanowires -- 2.2.2 Effect of Nano-sized Silver Particles to the Conductivity of ICAs -- 2.2.3 ICA Filled with Aggregates of Nano-sized Ag Particles -- 2.2.4 Nano-Ni Particle-Filled ICA -- 2.2.5 Nano-conductive Adhesives for Via-Filling Applications in Organic Substrates -- 2.2.6 Nano-ICAs Filled with CNT -- 2.2.6.1 Electrical and Mechanical Characterization of CNT-Filled ICAs -- 2.2.6.2 Effect of Adding CNT to the Electrical Properties of ICAs -- 2.2.6.3 Composites Filled with Surface-Treated CNTs -- 2.2.7 Inkjet Printable Nano-ICAs and Inks -- 2.3 Recent Advances of Nano-ACA/ACF -- 2.3.1 Low-Temperature Sintering of Nano-Ag-Filled ACA/ACF -- 2.3.2 Self-Assembled Molecular Wires for Nano-ACA/ACF -- 2.3.3 Silver Migration Control in Nano-silver-Filled ACA. 327 $a2.3.4 ACF with Straight-Chain-Like Nickel Nanoparticles -- 2.3.5 Nanowire ACF for Ultrafine-Pitch Flip-Chip Interconnection -- 2.3.6 An In Situ Formation of Nano-conductive Fillers in ACA/ACF -- 2.3.7 CNT-Based Conductive Nanocomposites for Transparent, Conductive, and Flexible Electronics -- 2.4 Concluding Remarks -- References -- Chapter 3: Applications of Carbon Nanomaterials as Electrical Interconnects and Thermal Interface Materials -- 3.1 Introduction -- 3.2 Structure and Properties of Carbon Nanotubes -- 3.2.1 Carbon Nanotube Structure -- 3.2.2 Electronic Structure and Electrical Properties -- 3.2.3 Separation of Metallic and Semiconducting SWNTs -- 3.2.4 Heat Transport -- 3.3 CNT Growth -- 3.3.1 Arc-Discharge and Laser Ablation Methods -- 3.3.2 Chemical Vapor Deposition (Common Thermal CVD, Plasma-Enhanced CVD, and Liquid Injection CVD) -- 3.4 Carbon Nanotubes for Interconnect Applications -- 3.5 Carbon Nanotubes as Thermal Interface Materials (TIMs) -- 3.5.1 A Brief Review of TIMs and Requirements for Next-Generation TIMs -- 3.5.2 Carbon Nanotube-Polymer Composites -- 3.5.3 Aligned Carbon Nanotube (ACNT)-Based Thermal Interface Materials (TIMs) -- 3.5.4 ACNT TIM Synthesis on Bulk Copper Substrates -- 3.6 Assembling Technologies of ACNTs -- 3.6.1 Physical Transfer/Anchoring -- 3.6.2 Chemical Transfer -- 3.7 Graphene Nanoelectronics -- 3.8 Graphite Nanosheet-Polymer Composites: Very Promising TIM Composite Materials -- 3.9 Thermal Property Measurement Techniques -- 3.9.1 Laser Flash Technique (LFA 447, NETZSCH, Inc.) -- 3.9.2 Steady-State Measurement -- 3.9.3 Thermoreflectance Technique -- 3.9.4 Photoacoustic Technique -- 3.10 Future Needs -- References -- Chapter 4: Nanomaterials via NanoSpray Combustion Chemical Vapor Condensation and Their Electronic Applications -- 4.1 Introduction to Nanomaterials and Their Synthesis. 327 $a4.2 NanoSpray Combustion Processing -- 4.3 Overview of Nanomaterials Capabilities -- 4.3.1 Single Metal Oxides and Phase Control -- 4.3.2 Multi-Metal Oxides -- 4.3.3 Metal Phosphates -- 4.3.4 Metals -- 4.3.5 Nanocomposites -- 4.3.6 Nanodispersions (Not Solutions) -- 4.4 Applications of Nanomaterials Made by CCVC -- 4.4.1 Conductive Adhesives as Electronic Interconnects -- 4.4.2 Lithium-Ion Battery Electrodes for Energy Storage -- 4.4.3 Polymer Nanocomposites for Capacitors -- 4.4.4 Inorganic Nanocomposites for Nonlinear Optical Materials -- 4.5 Conclusions -- References -- Chapter 5: Nanolead-Free Solder Pastes for Low Processing Temperature Interconnect Applications in Microelectronic Packaging -- 5.1 Size-Dependent Melting Point of Tin Nanoparticles -- 5.2 Size-Dependent Melting of Tin/Silver Alloy Nanoparticles -- 5.3 Size-Dependent Melting of Tin/Silver/Copper Alloy Nanoparticles -- 5.4 Wetting Properties of Tin/Silver and Tin/Silver/Copper Alloy Nanoparticle Pastes -- 5.5 Conclusion -- References -- Chapter 6: Introduction to Nanoparticle-Based Integrated Passives -- 6.1 Introduction and Background -- 6.2 History of Passive Technology -- 6.2.1 Next-Generation IP Needs -- 6.2.2 Advantages of EPs -- 6.2.3 Applications of IPs -- 6.3 Nanotechnology and Nanoparticles -- 6.3.1 Synthesis of Nanoparticles -- 6.3.2 Nanocomposites -- 6.3.2.1 Nanocomposite-Embedded Capacitors -- Materials -- Fabrication -- Characterization -- 6.3.2.2 Nanocomposite-Embedded Inductors -- Materials -- Fabrication -- Characterization -- 6.3.2.3 Nanoparticle-Based Embedded Resistors -- Material Choices -- Fabrication -- Characterization -- 6.4 Summary -- References -- Chapter 7: Thermally Conductive Nanocomposites -- 7.1 Model of Heat Transport -- 7.2 Thermal Contact Resistance -- 7.3 Thermal Conductivity Measurements -- 7.4 Composites with Metallic Fillers. 327 $a7.5 Composites with Carbon Allotropes Fillers -- 7.6 Conclusive Remarks and Prospects -- References -- Chapter 8: Physical Properties and Mechanical Behavior of Carbon Nano-tubes (CNTs) and Carbon Nano-fibers (CNFs) as Thermal In... -- 8.1 Introduction -- 8.2 Young´s Modulus of Individual CNTs/CNFs -- 8.3 Tunneling Electron Microscopy (TEM) -- 8.4 Thermal Vibration Method -- 8.5 Method Based on External Electric Field-Induced Vibrations -- 8.6 Measurements Using Scanning Probe Microscope (SPM) -- 8.7 Method Using CNT Buckling -- 8.8 Buckling of CNT Shells -- 8.9 Effective Young´s Modulus of CNT/CNF Arrays -- 8.9.1 Stress-Strain Relationship of PECVD-Synthesized CNT Film -- 8.9.2 Stress-Strain Relationship of TECVD-Synthesized CNT Film -- 8.9.3 Effective Young´s Modulus Has a Certain Limit -- 8.10 CNT/CNF-Based TIMS: Requirements for Physical (Mechanical) Properties -- 8.10.1 CNT/CNF Compliance -- 8.10.2 Bonding Strength of CNTs to Its Substrate -- 8.11 Conclusions -- Appendix -- Calculated Interfacial Shearing Stress from the Measured Shearing Force in a Bi-Material Assembly -- References -- Chapter 9: On-Chip Thermal Management and Hot-Spot Remediation -- 9.1 Introduction -- 9.1.1 Potential Hot-Spot Cooling Solutions -- 9.1.1.1 Passive Cooling Solutions -- 9.1.1.2 Active Cooling Solutions -- 9.1.1.3 Solid-State Cooling Solutions -- 9.2 On-Chip Hot-Spot Cooling Using Thermoelectric Microcoolers -- 9.2.1 Principle of Conventional Thermoelectric Cooler (TEC) -- 9.2.2 Thermoelectric Cooling Materials and Devices -- 9.2.2.1 Thin-Film Thermoelectric Coolers (TFTECs) -- 9.2.2.2 Bulk Miniaturized Thermoelectric Coolers -- 9.2.2.3 Nanostructured Thermoelectric Cooler -- 9.2.2.4 Silicon Thermoelectric Materials and Microcoolers -- 9.2.3 Hot-Spot Cooling Using Silicon Thermoelectric Microcooler -- 9.2.3.1 Doping Concentration Effect. 327 $a9.2.3.2 Microcooler Size Effect -- 9.2.3.3 Chip Thickness Effect -- 9.2.3.4 Electric Contact Resistance Effect -- 9.2.3.5 Hot-Spot Parameter Effect -- 9.2.4 Mini-Contact-Enhanced TEC for Hot-spot Cooling -- 9.2.4.1 Effect of Input Power on TEC -- 9.2.4.2 Effect of Mini-Contact Size -- 9.2.4.3 Effect of Thermoelectric Element Height -- 9.2.4.4 Effect of Thermal Contact Resistance -- 9.2.4.5 Experimental Demonstration -- 9.2.5 Applications in Biomedical Systems -- 9.3 On-Chip Hot-Spot Cooling Using Anisotropic Heat Spreader -- 9.3.1 Effect of In-Plane Spreader Thermal Conductivity -- 9.3.2 Variation of Spreader Thickness -- 9.3.3 Numerical Simulations and Contact Resistance Variation -- 9.3.4 Experimental Demonstration -- 9.4 On-Chip Hot-Spot Cooling Using Micro-Gap Cooler -- 9.4.1 Single-Phase Experiments -- 9.4.2 Application to Hot-Spot Remediation -- 9.5 Conclusions -- References -- Chapter 10: Some Aspects of Microchannel Heat Transfer -- 10.1 Fundamentals of Microchannel Pressure Drop and Heat Transfer -- 10.1.1 Single-Phase Flows -- 10.1.1.1 Simplified Model for Single-Phase Microchannel Heat Sink -- 10.1.1.2 Correlations for Friction Factor and Nusselt Number (Wei and Joshi 2003) -- 10.1.1.3 Thermal Resistance Network Analysis -- 10.1.2 Two-Phase (Liquid-Vapor) Flows -- 10.1.2.1 Two-Phase Flow Regimes for Microchannels -- Flow Regimes -- Flow Transitions -- Transition Criteria -- 10.1.2.2 Pressure Drop Correlations and Models -- Homogeneous Model -- Separated Flow Model -- 10.1.2.3 Heat-Transfer Correlations and Models -- Heat-Transfer Coefficient -- Critical Heat Flux (CHF) -- 10.1.2.4 Condensation in Microchannels -- 10.1.3 Rotating Flows -- 10.2 Numerical Techniques -- 10.2.1 Continuum Models -- 10.2.2 Molecular Models -- 10.3 Experimental Techniques -- 10.3.1 Measuring Full-Field Flow Inside Microchannels Using Micro-PIV. 327 $a10.3.1.1 Typical Micro-PIV System for Fluid Flow. 606 $aBioelectronics 606 $aNanostructured materials 615 0$aBioelectronics. 615 0$aNanostructured materials. 676 $a621.381046 702 $aWong$b C. P.$f1947- 702 $aMoon$b Kyoung-Sik 702 $aLi$b Yi 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483242303321 996 $aNano-bio-electronic, photonic and MEMS packaging$91905798 997 $aUNINA