LEADER 03751nam 22006495 450 001 9910483237903321 005 20251113193427.0 010 $a3-030-61761-0 024 7 $a10.1007/978-3-030-61761-5 035 $a(CKB)4100000011773922 035 $a(MiAaPQ)EBC6483719 035 $a(PPN)253860199 035 $a(Au-PeEL)EBL6483719 035 $a(OCoLC)1239982559 035 $a(DE-He213)978-3-030-61761-5 035 $a(EXLCZ)994100000011773922 100 $a20210218d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCartesian CFD Methods for Complex Applications /$fedited by Ralf Deiterding, Margarete Oliveira Domingues, Kai Schneider 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (150 pages) 225 1 $aICIAM 2019 SEMA SIMAI Springer Series,$x2662-7191 ;$v3 311 08$a3-030-61760-2 327 $aIncompressible ?ows: Bergmann, M. et al., AMR enabled quadtree discretization of incompressible Navier-Stokes equations with moving boundaries -- Truong, H. et al., Fluid-structure interaction using volume penalization and mass-spring models with application to flapping bumblebee flight -- Kadri Harouna, S. and Perrier, V., No-slip and Free-slip divergence-free wavelets for the simulation of incompressible viscous flows -- Compressible and weakly compressible ?ows: Péron, S., An immersed boundary method on Cartesian adaptive grids for the simulation of compressible flows -- Moreira Lopes, M., Magnetohydrodynamics adaptive solvers in the AMROC framework for space plasma applications -- Gkoudesnes, C. and Deiterding, R., Verification of the WALE large eddy simulation model for adaptive lattice Boltzmann methods implemented in the AMROC framework. 330 $aThis volume collects the most important contributions from four minisymposia from ICIAM 2019. The papers highlight cutting-edge applications of Cartesian CFD methods and describe the employed algorithms and numerical schemes. An emphasis is laid on complex multi-physics applications like magnetohydrodynamics, combustion, aerodynamics with fluid-structure interaction, solved with various discretizations, e.g. finite difference, finite volume, multiresolution or lattice Boltzmann CFD schemes. Software design aspects and parallelization challenges are also considered. The book is addressed to graduate students and scientists in the fields of applied mathematics and computational engineering. 410 0$aICIAM 2019 SEMA SIMAI Springer Series,$x2662-7191 ;$v3 606 $aMathematics$xData processing 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aFluid mechanics 606 $aComputational Mathematics and Numerical Analysis 606 $aMathematical and Computational Engineering Applications 606 $aEngineering Fluid Dynamics 615 0$aMathematics$xData processing. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aFluid mechanics. 615 14$aComputational Mathematics and Numerical Analysis. 615 24$aMathematical and Computational Engineering Applications. 615 24$aEngineering Fluid Dynamics. 676 $a620.1064015111 676 $a620.10640285 702 $aDeiterding$b Ralf 702 $aDomingues$b Margarete Oliveira 702 $aSchneider$b Kai 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483237903321 996 $aCartesian CFD methods for complex applications$92831826 997 $aUNINA