LEADER 05914nam 2200517 450 001 9910483116603321 005 20211014161307.0 010 $a3-030-66902-5 035 $a(CKB)4100000011807128 035 $a(MiAaPQ)EBC6527492 035 $a(Au-PeEL)EBL6527492 035 $a(OCoLC)1243514842 035 $a(PPN)254721060 035 $a(EXLCZ)994100000011807128 100 $a20211014d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEnhanced polarisation control and extreme electric fields $eadvances in terahertz spectroscopy applied to anisotropic materials and magnetic phase transitions /$fConnor Devyn William Mosley 210 1$aCham, Switzerland :$cSpringer,$d[2021] 215 $a1 online resource (xv, 115 pages) $cillustrations 225 1 $aSpringer theses 300 $a"Doctoral thesis accepted by University of Warwick, Coventry, England." 311 $a3-030-66901-7 320 $aIncludes bibliographical references. 327 $aIntro -- Supervisor's Foreword -- Abstract -- Publications -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Crystal Optics -- 1.1.1 The Dielectric Tensor -- 1.1.2 Principal Axes and the Index Ellipsoid -- 1.1.3 Plane Wave Propagation Through an Anisotropic Medium -- 1.1.4 Effects of an Anisotropic Medium on the Polarisation State of Light -- 1.2 Describing the Polarisation State of Electromagnetic Waves -- 1.2.1 Ellipticity and Orientation Angle -- 1.2.2 Alternative Descriptions of the Polarisation State -- 1.3 Electromagnons in Improper Ferroelectrics -- 1.3.1 Magnons -- 1.3.2 Electromagnons -- 1.3.3 Improper Ferroelectricity and Electromagnons in CuO -- 1.4 Structure of This Thesis -- References -- 2 Terahertz Time-Domain Spectroscopy -- 2.1 Generation of Broadband Terahertz Radiation -- 2.1.1 Photoconductive Emitters -- 2.1.2 Optical Rectification -- 2.2 Electro-optic Sampling -- 2.2.1 Polarisation-Resolved Electro-optic Sampling -- 2.3 THz-TDS Experimental Setup -- 2.3.1 Performing a THz-TDS Experiment -- 2.4 Extracting Sample Properties and Polarisation Information ... -- 2.4.1 Complex Refractive Index -- 2.4.2 Ellipticity and Orientation Angle -- 2.5 Summary -- References -- 3 Rotatable-Polarisation Terahertz Time-Domain Spectroscopy of Anisotropic Media -- 3.1 Investigating Anisotropy at Terahertz Frequencies -- 3.1.1 Disambiguating Spectral Features Using Polarisation-Resolved Detection Methods -- 3.1.2 Terahertz Polarimetry and Ellipsometry -- 3.1.3 Methods of Terahertz Polarisation Rotation -- 3.2 Rotatable-Polarisation Terahertz Time-Domain Spectrometer -- 3.2.1 Rotating the Terahertz Polarisation State -- 3.2.2 Polarisation-Resolved Detection Method and Alignment -- 3.2.3 Calibration of the Terahertz Emission Strength -- 3.2.4 Polarisation State of the Rotated Terahertz Pulses. 327 $a3.3 Comparison of Rotatable Polarisation to Projection via Wire-Grid Polarisers -- 3.4 Experimental Implementation of RP-THz-TDS -- 3.4.1 Sample Details -- 3.4.2 Mapping Birefringence and Identifying Polarisation Eigenvectors Using RP-THz-TDS -- 3.4.3 Extracting the Full Complex Refractive Index Using RP-THz-TDS -- 3.4.4 Anisotropic Absorption and Chromatic Dispersion in CuO -- 3.5 Summary -- References -- 4 Scalable Interdigitated Photoconductive Emitters for the Electrical Modulation of Terahertz Beams with Arbitrary Linear Polarisation -- 4.1 Photoconductive Emitter Geometry and Terahertz Polarisation State -- 4.1.1 Electric Dipole Radiation from Photoconductive Emitters -- 4.1.2 Controlling the Terahertz Polarisation State with the Emitter Geometry -- 4.2 Multi-Pixel Interdigitated Photoconductive Emitters -- 4.2.1 Emitter Concept and Design -- 4.2.2 Device Fabrication -- 4.2.3 Simulated Device Performance -- 4.3 Experimental Device Performance -- 4.3.1 Initial Electrical Biasing Tests -- 4.3.2 Generating Arbitrary Linear polarisation States via Electrical Control -- 4.4 Rapid Modulation of Circular Polarisation States for Circular ... -- 4.4.1 Converting from Linear to Circular Polarisation via a Prism -- 4.4.2 Stokes Parameters -- 4.4.3 Experimental Setup -- 4.4.4 Experimental Results -- 4.5 Summary -- References -- 5 High-Field Terahertz Time-Domain Spectroscopy of Single-Walled Carbon Nanotubes and CuO -- 5.1 Terahertz Spectroscopy Using Extreme Electric Fields -- 5.1.1 Generating High-Field Terahertz Radiation -- 5.1.2 Choosing the Right High-Field THz Source for You -- 5.2 High-Field Terahertz Time-Domain Spectrometer -- 5.2.1 Tilted Pulse-Front Pumping in LiNbO3 -- 5.2.2 Experimental Setup -- 5.2.3 Controlling the Electric Field Strength of Terahertz Pulses -- 5.3 A Test Case of Nonlinear THz Transmission: Indium Antimonide. 327 $a5.3.1 Experimental Results -- 5.4 Nonlinear THz Transmission in Single-Walled Carbon Nanotube Films -- 5.4.1 Experimental Results -- 5.5 Electric Field-Dependent THz Transmission of CuO -- 5.5.1 Electric Field-Dependence of the Electromagnon Response in CuO -- 5.6 Summary -- References -- 6 Conclusions -- 6.1 Outlook and Future Work -- Appendix Tracking Disorder Broadening and Hysteresis in First-Order Phase Transitions via the Electromagnon Response in Improper Ferroelectrics. 410 0$aSpringer theses. 606 $aTerahertz spectroscopy 606 $aMaterials$xMagnetic properties 606 $aPhase transformations (Statistical physics) 615 0$aTerahertz spectroscopy. 615 0$aMaterials$xMagnetic properties. 615 0$aPhase transformations (Statistical physics) 676 $a543.5 700 $aMosley$b Connor Devyn William$0849117 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483116603321 996 $aEnhanced polarisation control and extreme electric fields$91896442 997 $aUNINA