LEADER 01060nam2-2200361---450 001 990001947480203316 005 20220407085005.0 035 $a000194748 035 $aUSA01000194748 035 $a(ALEPH)000194748USA01 035 $a000194748 100 $a20040823d1979----km-y0itay0103----ba 101 $aita 102 $aIT 105 $aa|||||||001yy 200 1 $a10 : Estremo oriente$fToshio Nagahiro, Eun Hyun Yum, Takeshi Kuno 210 $aMilano$cA. Mondadori$d1979 215 $a191 p.$cill.$d28 cm 225 2 $aLibri illustrati Mondadori 410 0$12001$aLibri illustrati Mondadori 454 1$12001 461 1$1001000194720$12001$aStoria della scultura nel mondo 606 0 $aScultura$xStoria 700 1$aNAGAHIRO,$bToshio$037027 701 0$aEUN HYUN YUM$0565554 701 1$aKUNO,$bTakeshi$0565555 801 0$aIT$bsalbc$gISBD 912 $a990001947480203316 951 $aXI.2.B. 124/10(730.9 STO)$b84514 L.M.$c730.9 STO 959 $aBK 969 $aUMA 996 $a10 : Estremo oriente$92806607 997 $aUNISA LEADER 01875nam 2200505I 450 001 9910702353903321 005 20140812155421.0 035 $a(CKB)5470000002426619 035 $a(OCoLC)886550216 035 $a(EXLCZ)995470000002426619 100 $a20140812d2012 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNon-flow-through fuel cell system test results and demonstration on the SCARAB rover /$fBrianne T. Scheidegger and Kenneth A. Burke, Ian J. Jakupca 210 1$aCleveland, Ohio :$cNational Aeronautics and Space Administration, Glenn Research Center,$d2012. 215 $a1 online resource (4 pages) $ccolor illustrations 225 1 $aNASA/TM ;$v2012-217693 300 $aTitle from title screen (viewed on Aug. 12, 2014). 300 $a"August 2012." 300 $a"Prepared for the 45th Power Sources Conference, Las Vegas, Nevada, June 11-14, 2012." 320 $aIncludes bibliographical references (page 4). 606 $aSpacecraft power supplies$2nasat 606 $aElectric batteries$2nasat 606 $aLithium batteries$2nasat 606 $aEnergy storage$2nasat 606 $aHydrogen$2nasat 615 7$aSpacecraft power supplies. 615 7$aElectric batteries. 615 7$aLithium batteries. 615 7$aEnergy storage. 615 7$aHydrogen. 700 $aScheidegger$b Brianne T.$01386307 702 $aBurke$b Kenneth A. 702 $aJakupca$b Ian J. 712 02$aNASA Glenn Research Center, 712 02$aUnited States.$bNational Aeronautics and Space Administration, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910702353903321 996 $aNon-flow-through fuel cell system test results and demonstration on the SCARAB rover$93435171 997 $aUNINA LEADER 04328nam 22006495 450 001 9910483112403321 005 20250609111352.0 010 $a3-030-35993-X 024 7 $a10.1007/978-3-030-35993-5 035 $a(CKB)5300000000003422 035 $a(DE-He213)978-3-030-35993-5 035 $a(MiAaPQ)EBC6126751 035 $a(PPN)243226047 035 $a(MiAaPQ)EBC6126442 035 $a(EXLCZ)995300000000003422 100 $a20200302d2020 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCharge Transport in Low Dimensional Semiconductor Structures $eThe Maximum Entropy Approach /$fby Vito Dario Camiola, Giovanni Mascali, Vittorio Romano 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XVI, 337 p. 83 illus., 23 illus. in color.) 225 1 $aThe European Consortium for Mathematics in Industry ;$v31 311 08$a3-030-35992-1 327 $aBand Structure and Boltzmann Equation -- Maximum Entropy Principle -- Application of MEP to Charge Transport in Semiconductors -- Application of MEP to Silicon -- Some Formal Properties of the Hydrodynamical Model -- Quantum Corrections to the Semiclassical Models -- Mathematical Models for the Double-Gate MOSFET -- Numerical Method and Simulations -- Application of MEP to Charge Transport in Graphene. 330 $aThis book offers, from both a theoretical and a computational perspective, an analysis of macroscopic mathematical models for description of charge transport in electronic devices, in particular in the presence of confining effects, such as in the double gate MOSFET. The models are derived from the semiclassical Boltzmann equation by means of the moment method and are closed by resorting to the maximum entropy principle. In the case of confinement, electrons are treated as waves in the confining direction by solving a one-dimensional Schrödinger equation obtaining subbands, while the longitudinal transport of subband electrons is described semiclassically. Limiting energy-transport and drift-diffusion models are also obtained by using suitable scaling procedures. An entire chapter in the book is dedicated to a promising new material like graphene. The models appear to be sound and sufficiently accurate for systematic use in computer-aided design simulators for complex electron devices. The book is addressed to applied mathematicians, physicists, and electronic engineers. It is written for graduate or PhD readers but the opening chapter contains a modicum of semiconductor physics, making it self-consistent and useful also for undergraduate students. 410 0$aThe European Consortium for Mathematics in Industry ;$v31 606 $aMathematical physics 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aNanotechnology 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aTheoretical, Mathematical and Computational Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19005 606 $aMathematical and Computational Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T11006 606 $aNanotechnology$3https://scigraph.springernature.com/ontologies/product-market-codes/Z14000 615 0$aMathematical physics. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 0$aNanotechnology. 615 14$aMathematical Physics. 615 24$aTheoretical, Mathematical and Computational Physics. 615 24$aMathematical and Computational Engineering. 615 24$aNanotechnology. 676 $a621.3815284 700 $aCamiola$b Vito Dario$4aut$4http://id.loc.gov/vocabulary/relators/aut$0947750 702 $aMascali$b Giovanni$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aRomano$b Vittorio$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483112403321 996 $aCharge Transport in Low Dimensional Semiconductor Structures$92141812 997 $aUNINA