LEADER 01918nam1 2200433 450 001 990003416190203316 005 20100623084238.0 010 $a978-88-387-5579-5 035 $a000341619 035 $aUSA01000341619 035 $a(ALEPH)000341619USA01 035 $a000341619 100 $a20100622d--------km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> atti di stato civile$enascita, cittadinanza, matrimonio e morte$fMarina Caliaro, Renzo Calvigioni$gcon la collaborazione di Remo Govoni 210 $aSantarcangelo di Romagna$cMaggioli 215 $av.$d30 cm 225 2 $aProgetto ente locale$iServizi demografici 410 0$12001$aProgetto ente locale$iServizi demografici 463 \1$1001990003416210203316$12001 $a<<1.>> Atti di nascita$eguida pratica alla stesura, esempi completi di redazione, modulistica e normativa 463 \1$1001990003416220203316$12001 $a<<2.>> Atti di cittadinanza$eguida pratica alla stesura, esempi completi di redazione, modulistica e normativa 463 \1$1001990003416240203316$12001 $a<<3.>> Atti di matrimonio e verbali per le pubblicazioni$eguida pratica alla stesura, esempi completi di redazione, modulistica e normativa 463 \1$1001990003416260203316$12001 $a<<4.>> Atti di morte$econ cenni sulle procedure di polizia mortuaria$eguida pratica alla stesura, esempi completi di redazione, modulistica e normativa 606 0 $2BNCF 700 1$aCALIARO,$0Marina$0542164 701 1$aCALVIGIONI,$bRenzo$0542165 702 1$aGOVONI,$bRemo 801 0$aIT$bsalbc$gISBD 912 $a990003416190203316 951 $aXXIV.3.L.$bG.$cXXIV.3.L. 959 $aBK 969 $aGIU 979 $aIANNONE$b90$c20100622$lUSA01$h1259 979 $aIANNONE$b90$c20100623$lUSA01$h0837 979 $aIANNONE$b90$c20100623$lUSA01$h0842 996 $aAtti di stato civile$91077318 997 $aUNISA LEADER 04092nam 22006495 450 001 9910483112403321 005 20251113191545.0 010 $a3-030-35993-X 024 7 $a10.1007/978-3-030-35993-5 035 $a(CKB)5300000000003422 035 $a(DE-He213)978-3-030-35993-5 035 $a(MiAaPQ)EBC6126751 035 $a(PPN)243226047 035 $a(MiAaPQ)EBC6126442 035 $a(EXLCZ)995300000000003422 100 $a20200302d2020 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCharge Transport in Low Dimensional Semiconductor Structures $eThe Maximum Entropy Approach /$fby Vito Dario Camiola, Giovanni Mascali, Vittorio Romano 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XVI, 337 p. 83 illus., 23 illus. in color.) 225 1 $aThe European Consortium for Mathematics in Industry,$x2946-1871 ;$v31 311 08$a3-030-35992-1 327 $aBand Structure and Boltzmann Equation -- Maximum Entropy Principle -- Application of MEP to Charge Transport in Semiconductors -- Application of MEP to Silicon -- Some Formal Properties of the Hydrodynamical Model -- Quantum Corrections to the Semiclassical Models -- Mathematical Models for the Double-Gate MOSFET -- Numerical Method and Simulations -- Application of MEP to Charge Transport in Graphene. 330 $aThis book offers, from both a theoretical and a computational perspective, an analysis of macroscopic mathematical models for description of charge transport in electronic devices, in particular in the presence of confining effects, such as in the double gate MOSFET. The models are derived from the semiclassical Boltzmann equation by means of the moment method and are closed by resorting to the maximum entropy principle. In the case of confinement, electrons are treated as waves in the confining direction by solving a one-dimensional Schrödinger equation obtaining subbands, while the longitudinal transport of subband electrons is described semiclassically. Limiting energy-transport and drift-diffusion models are also obtained by using suitable scaling procedures. An entire chapter in the book is dedicated to a promising new material like graphene. The models appear to be sound and sufficiently accurate for systematic use in computer-aided design simulators for complex electron devices. The book is addressed to applied mathematicians, physicists, and electronic engineers. It is written for graduate or PhD readers but the opening chapter contains a modicum of semiconductor physics, making it self-consistent and useful also for undergraduate students. 410 0$aThe European Consortium for Mathematics in Industry,$x2946-1871 ;$v31 606 $aMathematical physics 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aNanotechnology 606 $aMathematical Physics 606 $aTheoretical, Mathematical and Computational Physics 606 $aMathematical and Computational Engineering Applications 606 $aNanotechnology 615 0$aMathematical physics. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aNanotechnology. 615 14$aMathematical Physics. 615 24$aTheoretical, Mathematical and Computational Physics. 615 24$aMathematical and Computational Engineering Applications. 615 24$aNanotechnology. 676 $a621.3815284 700 $aCamiola$b Vito Dario$4aut$4http://id.loc.gov/vocabulary/relators/aut$0947750 702 $aMascali$b Giovanni$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aRomano$b Vittorio$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483112403321 996 $aCharge Transport in Low Dimensional Semiconductor Structures$92141812 997 $aUNINA