LEADER 02503nam 2200589 a 450 001 9910482967303321 005 20200520144314.0 010 $a9786613569776 010 $a9781280391859 010 $a1280391855 010 $a9783642148286 010 $a364214828X 024 7 $a10.1007/978-3-642-14828-6 035 $a(CKB)2670000000045335 035 $a(SSID)ssj0000450393 035 $a(PQKBManifestationID)11313377 035 $a(PQKBTitleCode)TC0000450393 035 $a(PQKBWorkID)10444036 035 $a(PQKB)11152733 035 $a(DE-He213)978-3-642-14828-6 035 $a(MiAaPQ)EBC3065932 035 $a(PPN)149027117 035 $a(EXLCZ)992670000000045335 100 $a20100818d2010 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aSymmetries of compact riemann surfaces /$fEmilio Bujalance ... [et al.] 205 $a1st ed. 2010. 210 $aHeidelberg $cSpringer$d2010 215 $a1 online resource (XX, 164 p.) 225 1 $aLecture notes in mathematics,$x0075-8434 ;$v2007 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783642148279 311 08$a3642148271 320 $aIncludes bibliographical references (p. 151-155) and index. 327 $aPreliminaries -- On the Number of Conjugacy Classes of Symmetries of Riemann Surfaces -- Counting Ovals of Symmetries of Riemann Surfaces -- Symmetry Types of Some Families of Riemann Surfaces -- Symmetry Types of Riemann Surfaces with a Large Group of Automorphisms. 330 $aThis monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v2007. 606 $aRiemann surfaces 615 0$aRiemann surfaces. 676 $a515.9 701 $aBujalance Garcia$b Emilio$0441093 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910482967303321 996 $aSymmetries of compact riemann surfaces$9261762 997 $aUNINA