LEADER 01873nam0 22004093i 450 001 VAN00279319 005 20241022085343.449 017 70$2N$a9789811968181 100 $a20240708d2023 |0itac50 ba 101 $aeng 102 $aSG 105 $a|||| ||||| 200 1 $aTime Dependent Phase Space Filters$eA Stable Absorbing Boundary Condition$fAvy Soffer, Chris Stucchio, Minh-Binh Tran 210 $aSingapore$cSpringer$d2023 215 $ax, 140 p.$cill.$d24 cm 410 1$1001VAN00279138$12001 $aSpringerBriefs on PDEs and Data Science$1210 $aSingapore [etc.]$cSpringer$d2023- 606 $a35-XX$xPartial differential equations [MSC 2020]$3VANC019763$2MF 606 $a35Q40$xPDEs in connection with quantum mechanics [MSC 2020]$3VANC022865$2MF 606 $a35Q55$xNLS equations (nonlinear Schroedinger equations) [MSC 2020]$3VANC022712$2MF 610 $aAbsorbing boundary conditions$9KW:K 610 $aFrames$9KW:K 610 $aNonlinear waves$9KW:K 610 $aRadiation Conditions$9KW:K 610 $aSchrödinger equations$9KW:K 620 $aSG$dSingapore$3VANL000061 700 1$aSoffer$bAvy$3VANV231885$01452927 701 1$aStucchio$bChris$3VANV231886$01745426 701 1$aTran$bMinh-Binh$3VANV231887$01745427 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250905$gRICA 856 4 $uhttps://doi.org/10.1007/978-981-19-6818-1$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00279319 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 9362 $e08eMF9362 20240715 996 $aTime Dependent Phase Space Filters$94176157 997 $aUNICAMPANIA LEADER 03662oam 2200601zu 450 001 9910482885303321 005 20230421045457.0 010 $a3-662-21903-4 035 $a(CKB)1000000000751041 035 $a(SSID)ssj0000508726 035 $a(PQKBManifestationID)12174283 035 $a(PQKBTitleCode)TC0000508726 035 $a(PQKBWorkID)10556044 035 $a(PQKB)10811619 035 $a(MiAaPQ)EBC3100103 035 $a(Au-PeEL)EBL3100103 035 $a(CaPaEBR)ebr10975005 035 $a(OCoLC)934998162 035 $a(BIP)18529317 035 $a(EXLCZ)991000000000751041 100 $a20160829d1994 uy 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFine structure and iteration trees 205 $a1st ed. 210 31$a[Place of publication not identified]$cSpringer Verlag$d1994 215 $a1 online resource (137 pages) 225 0 $aLecture notes in logic Fine structure and iteration trees 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-57494-8 327 $aLecture Notes in Logic 3 Fine Structure and Iteration Trees -- Fine Structure and Iteration Trees -- Copyright -- Contents -- 0. Introduction -- 1. Good Extender Sequences -- 2. Fine Structure -- 3. Squashed Mice -- 4. Ultrapowers -- 5. Iteration Trees -- 6. Uniqueness of Wellfounded Branches -- 7. The Comparison Process -- 8. Solidity and Condensation -- 9. Uniqueness of the Next Extender -- 10. Closure under Initial Segment -- 11. The Construction -- 12. Iterability -- References -- Index of Definitions -- Index. 330 $aIn these notes we construct an inner model with a Woodin cardinal, and develop fine structure theory for this model. Our model is of the form L[E], where E is a coherent sequence of extenders, and our work builds upon the existing theory of such models. In particular, we rely upon the fine structure theory of L[E] models with strong cardinals, which is due to Jensen, Solovay, Dodd-Jensen, and Mitchell, and upon the theory of iteration trees and "backgrounded" L[EJ models with Woodin cardinals, which is due to Martin and Steel. Our work is what results when fine structure meets iteration trees. One of our motivations was the desire to remove the severe limitations on the theory developed in [MS] caused by its use of an external comparison process. Because of this defect, the internal theory ofthe model L[E] constructed in [MS] is to a large extent a mystery. For example it is open whether the L[EJ of [MS] satisfies GCH. Moreover, the use of an external comparison process blocks the natural generalization to models with infinitely many Woodin cardinals of even the result [MS] does prove about L[E], that L[E] F= CH + ~ has a definable wellordering. Our strategy for making the comparison process internal is due to Mitchell and actually predates [MS]. The strategy includes taking finely calibrated partial ultrapowers ("dropping to a mouse") at certain stages in the comparison process. 606 $aConstructive mathematics 606 $aSet theory 606 $aMathematics$2HILCC 606 $aPhysical Sciences & Mathematics$2HILCC 606 $aMathematical Theory$2HILCC 615 0$aConstructive mathematics. 615 0$aSet theory. 615 7$aMathematics 615 7$aPhysical Sciences & Mathematics 615 7$aMathematical Theory 676 $a511.3 700 $aMitchell$b William J.$00 702 $aSteel$b J. R 801 0$bPQKB 906 $aBOOK 912 $a9910482885303321 996 $aFine structure and iteration trees$92846464 997 $aUNINA