LEADER 04304nam 22009015 450 001 9910481955003321 005 20200705114651.0 010 $a9783540315506 010 $a3540315500 024 7 $a10.1007/b105138 035 $a(CKB)1000000000231927 035 $a(DE-He213)978-3-540-31550-6 035 $a(SSID)ssj0000318909 035 $a(PQKBManifestationID)11242009 035 $a(PQKBTitleCode)TC0000318909 035 $a(PQKBWorkID)10336372 035 $a(PQKB)10219958 035 $a(MiAaPQ)EBC6283819 035 $a(MiAaPQ)EBC4976017 035 $a(MiAaPQ)EBC5578625 035 $a(Au-PeEL)EBL4976017 035 $a(CaONFJC)MIL140222 035 $a(OCoLC)1024264248 035 $a(Au-PeEL)EBL5578625 035 $a(OCoLC)262677875 035 $a(PPN)123091152 035 $a(EXLCZ)991000000000231927 100 $a20100806d2005 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMetamorphoses of Hamiltonian Systems with Symmetries /$fby Konstantinos Efstathiou 205 $a1st ed. 2005. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2005. 215 $a1 online resource (IX, 149 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1864 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783540243168 311 08$a354024316X 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Four Hamiltonian Systems -- Small Vibrations of Tetrahedral Molecules -- The Hydrogen Atom in Crossed Fields -- Quadratic Spherical Pendula -- Fractional Monodromy in the 1: - 2 Resonance System -- The Tetrahedral Group -- Local Properties of Equilibria -- References -- Index. 330 $aModern notions and important tools of classical mechanics are used in the study of concrete examples that model physically significant molecular and atomic systems. The parametric nature of these examples leads naturally to the study of the major qualitative changes of such systems (metamorphoses) as the parameters are varied. The symmetries of these systems, discrete or continuous, exact or approximate, are used to simplify the problem through a number of mathematical tools and techniques like normalization and reduction. The book moves gradually from finding relative equilibria using symmetry, to the Hamiltonian Hopf bifurcation and its relation to monodromy and, finally, to generalizations of monodromy. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1864 606 $aMathematical physics 606 $aStatistical physics 606 $aDynamics 606 $aDynamics 606 $aErgodic theory 606 $aTopological groups 606 $aLie groups 606 $aTheoretical, Mathematical and Computational Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19005 606 $aComplex Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P33000 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 606 $aStatistical Physics and Dynamical Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P19090 615 0$aMathematical physics. 615 0$aStatistical physics. 615 0$aDynamics. 615 0$aDynamics. 615 0$aErgodic theory. 615 0$aTopological groups. 615 0$aLie groups. 615 14$aTheoretical, Mathematical and Computational Physics. 615 24$aComplex Systems. 615 24$aDynamical Systems and Ergodic Theory. 615 24$aTopological Groups, Lie Groups. 615 24$aStatistical Physics and Dynamical Systems. 676 $a515.7222 700 $aEfstathiou$b Konstantinos$4aut$4http://id.loc.gov/vocabulary/relators/aut$0472491 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910481955003321 996 $aMetamorphoses of Hamiltonian systems with symmetries$9230758 997 $aUNINA