LEADER 04650nam 2200577 450 001 9910481049303321 005 20170822144323.0 010 $a1-4704-0250-5 035 $a(CKB)3360000000464845 035 $a(EBL)3114569 035 $a(SSID)ssj0000889174 035 $a(PQKBManifestationID)11488394 035 $a(PQKBTitleCode)TC0000889174 035 $a(PQKBWorkID)10876269 035 $a(PQKB)11493909 035 $a(MiAaPQ)EBC3114569 035 $a(PPN)195415450 035 $a(EXLCZ)993360000000464845 100 $a19981124d1999 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRational S1-equivariant stable homotopy theory /$fJ.P.C. Greenlees 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1999. 215 $a1 online resource (306 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 661 300 $a"March 1999, volume 138, number 661 (end of volume)." 311 $a0-8218-1001-4 320 $aIncludes bibliographical references (pages 289) and indexes. 327 $a""Contents""; ""Chapter 0. General Introduction""; ""0.1. Motivation""; ""0.2. Overview""; ""Part I. The algebraic model of rational T-spectra""; ""Chapter 1. Introduction to Part I""; ""1.1. Outline of the algebraic models""; ""1.2. Reading Guide for Part I""; ""1.3. Haeberly's example""; ""1.4. McClure's Chern character isomorphism for F-spaces""; ""Chapter 2. Topological building blocks""; ""2.1. Natural cells and basic cells""; ""2.2. Separating isotropy types""; ""2.3. The single strand spectra E(H)""; ""2.4. Operations: self-maps of E(H)""; ""Chapter 3. Maps between F-free T-spectra"" 327 $a""3.1. The Adams short exact sequence""""3.2. The Whitehead and Hurewicz theorems for T-spectra over H""; ""3.3. The injective case""; ""3.4. Injectives in the category of torsion Q[c[sub(H)]]-modules""; ""3.5. Proof of Theorem 3.1.1""; ""Chapter 4. Categorical reprocessing""; ""4.1. Recollections about derived categories""; ""4.2. Split linear triangulated categories""; ""4.3. The uniqueness theorem""; ""4.4. The algebraicization of the category of T-spectra over H""; ""4.5. The algebraicization of the category of F-spectra""; ""4.6. Euler classes revisited"" 327 $a""Chapter 5. Assembly and the standard model""""5.1. Assembly""; ""5.2. The ring t[sup(f)][sub(*)] ""; ""5.3. Global assembly""; ""5.4. The standard model category""; ""5.5. Homological algebra in the standard model""; ""5.6. The algebraicization of rational T-spectra""; ""5.7. Maps between injective spectra""; ""5.8. Algebraic cells and spheres""; ""5.9. Explicit models""; ""5.10. Hausdorff modules""; ""Chapter 6. The torsion model""; ""6.1. Practical calculations""; ""6.2. The torsion model""; ""6.3. Homological algebra in the torsion model"" 327 $a""6.4. The derived category of the torsion model""""6.5. Equivalence of derived categories of standard and torsion models""; ""6.6. Relationship to topology""; ""Part II. Change of groups functors in algebra and topology""; ""Chapter 7. Introduction to Part II""; ""7.1. General outline""; ""7.2. Modelling functors changing equivariance""; ""7.3. Functors between split triangulated categories""; ""Chapter 8. Induction, coinduction and geometric fixed points""; ""8.1. Forgetful, induction and coinduction functors""; ""8.2. The Lewis-May T-fixed point functor"" 327 $a""8.3. An algebraic model for geometric fixed points""""8.4. Analysis of geometric fixed points""; ""Chapter 9. Algebraic inflation and deflation""; ""9.1. Algebraic inflation and deflation of omitted f-modules""; ""9.2. Inflation and its right adjoint on the torsion model category""; ""Chapter 10. Inflation, Lewis-May fixed points and quotients""; ""10.1. The topological inflation and Lewis-May fixed point functors""; ""10.2. Inflation on objects""; ""10.3. Correspondence of Algebraic and geometric inflation functors""; ""10.4. A direct approach to the Lewis-May fixed point functor"" 327 $a""10.5. The homotopy type of Lewis-May fixed points"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 661. 606 $aHomotopy theory 608 $aElectronic books. 615 0$aHomotopy theory. 676 $a510 s 676 $a514/.24 700 $aGreenlees$b J. P. C$g(John Patrick Campbell),$f1959-$0855275 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910481049303321 996 $aRational S1-equivariant stable homotopy theory$91909461 997 $aUNINA