LEADER 01794nam 2200541 450 001 9910481018803321 005 20180613001308.0 010 $a1-4704-0494-X 035 $a(CKB)3360000000465072 035 $a(EBL)3114078 035 $a(SSID)ssj0000888789 035 $a(PQKBManifestationID)11462802 035 $a(PQKBTitleCode)TC0000888789 035 $a(PQKBWorkID)10865675 035 $a(PQKB)11565087 035 $a(MiAaPQ)EBC3114078 035 $a(PPN)195417771 035 $a(EXLCZ)993360000000465072 100 $a20150417h20072007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBasic global relative invariants for nonlinear differential equations /$fRoger Chalkley 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2007. 210 4$d©2007 215 $a1 online resource (386 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 190, Number 888 300 $a"Volume 190, Number 888 (first of three numbers)." 311 $a0-8218-3991-8 320 $aIncludes bibliographical references and index. 327 $a""Part 3. Supplementary Results"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 190, Number 888. 606 $aDifferential equations, Nonlinear 606 $aInvariants 608 $aElectronic books. 615 0$aDifferential equations, Nonlinear. 615 0$aInvariants. 676 $a515.355 700 $aChalkley$b Roger$f1931-$0991375 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910481018803321 996 $aBasic global relative invariants for nonlinear differential equations$92268671 997 $aUNINA LEADER 03000nam a2200433 i 4500 001 991003264329707536 006 m d 007 cr cn ---mpcbr 008 160729t20142014sz a ob 001 0 eng d 020 $a9783319031521 024 7 $a10.1007/978-3-319-03152-1$2doi 035 $ab14305550-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a519.2$223 084 $aAMS 60G50 084 $aAMS 05C81 084 $aAMS 31C20 084 $aAMS 35K08 084 $aLC QA274.73 100 1 $aKumagai, Takashi$0525017 245 10$aRandom walks on disordered media and their scaling limits$h[e-book] :$bÉcole d'Été de Probabilités de Saint-Flour XL - 2010 /$cTakashi Kumagai 246 30$aÉcole d'Été de Probabilités de Saint-Flour XL-2010 260 $aCham [Switzerland] :$bSpringer,$cc2014 300 $a1 online resource (x, 147 pages) 440 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2101 504 $aIncludes bibliographical references (pages 135-143) and index 505 0 $aIntroduction ; Weighted graphs and the associated Markov chains ; Heat kernel estimates general theory ; Heat kernel estimates using effective resistance ; Heat kernel estimates for random weighted graphs ; Alexander-Orbach conjecture holds when two-point functions behave nicely ; Further results for random walk on IIC ; Random conductance model 520 $aIn these lecture notes, we will analyze the behavior of random walk on disordered mediaby means ofboth probabilistic and analytic methods, and will study the scalinglimits. We will focus on the discrete potential theory and how the theory is effectively used in the analysis of disordered media.Thefirst few chapters of the notes can be used as an introduction to discrete potential theory. Recently, there has beensignificantprogress on thetheoryof random walkon disordered media such as fractals and random media.Random walk on a percolation cluster('the ant in the labyrinth')is one of the typical examples. In 1986, H. Kesten showedtheanomalous behavior of a random walk on a percolation cluster at critical probability. Partly motivated by this work, analysis and diffusion processes on fractals have been developed since the late eighties. As a result, various new methods have been produced to estimate heat kernels on disordered media. These developments are summarized in the notes 650 0$aRandom walks 650 0$aPotential theory (Mathematics) 650 0$aDistribution (Probability theory) 773 0 $aSpringer eBooks 776 08$aPrinted edition:$z9783319031514 856 41$uhttp://link.springer.com/book/10.1007/978-3-319-03152-1$zAn electronic book accessible through the World Wide Web 907 $a.b14305550$b03-03-22$c29-07-16 912 $a991003264329707536 996 $aRandom walks on disordered media and their scaling limits$91392288 997 $aUNISALENTO 998 $ale013$b29-07-16$cm$d@ $e-$feng$gsz $h0$i0