LEADER 02742nam 2200601 450 001 9910480991503321 005 20170822144317.0 010 $a1-4704-0278-5 035 $a(CKB)3360000000464871 035 $a(EBL)3114536 035 $a(SSID)ssj0000976609 035 $a(PQKBManifestationID)11585376 035 $a(PQKBTitleCode)TC0000976609 035 $a(PQKBWorkID)11019714 035 $a(PQKB)11017134 035 $a(MiAaPQ)EBC3114536 035 $a(PPN)195415728 035 $a(EXLCZ)993360000000464871 100 $a19991109h20002000 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aUniform rectifiability and quasiminimizing sets of arbitrary codimension /$fGuy David, Stephen Semmes 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2000] 210 4$dİ2000 215 $a1 online resource (146 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 687 300 $a"March 2000, volume 144, number 687 (end of volume)." 311 $a0-8218-2048-6 320 $aIncludes bibliographical references (page 131). 327 $a""Contents""; ""Chapter 0. Introduction""; ""Chapter 1. Quasiminimizers""; ""Chapter 2. Uniform Rect inability and the Main Result""; ""Chapter 3. Lipschitz Projections into Skeleta""; ""Chapter 4. Local Ahlfors-Regularity""; ""Chapter 5. Lipschitz Mappings with Big Images""; ""Chapter 6. From Lipschitz Functions to Projections""; ""Chapter 7. Regular Sets and Cubical Patchworks""; ""Chapter 8. A Stopping-Time Argument""; ""Chapter 9. Proof of Main Lemma 8.7""; ""9.1. A general deformation result""; ""9.2. Application to quasiminimizers""; ""Chapter 10. Big Projections"" 327 $a""Chapter 11. Restricted and Dyadic Quasiminimizers""""Chapter 12. Applications""; ""12.1. The initial set-up""; ""12.2. Stability of sets""; ""12.3. Topological interpretations""; ""12.4. Polyhedral approximations and minimizers""; ""12.5. General sets""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 687. 606 $aMinimal surfaces 606 $aGeometric measure theory 606 $aFourier analysis 608 $aElectronic books. 615 0$aMinimal surfaces. 615 0$aGeometric measure theory. 615 0$aFourier analysis. 676 $a510 s 676 $a516.3/62 700 $aDavid$b Guy$f1957-$0941144 702 $aSemmes$b Stephen$f1962- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480991503321 996 $aUniform rectifiability and quasiminimizing sets of arbitrary codimension$92122803 997 $aUNINA LEADER 00981nam a2200289 i 4500 001 991001224819707536 005 20020507185541.0 008 950727s1976 us ||| | eng 020 $a0387901744 035 $ab10818005-39ule_inst 035 $aLE01308957$9ExL 040 $aDip.to Matematica$beng 082 0 $a001.535 084 $aAMS 68T10 100 1 $aGrenander, Ulf$0103221 245 10$aPattern synthesis /$cUlf Grenander 260 $aNew York :$bSpringer-Verlag,$c1976 300 $avii, 509 p. ;$c23 cm. 490 0 $aApplied mathematical sciences ;$v18 490 0 $aLectures in pattern theory ;$v1 650 4$aPattern recognition 907 $a.b10818005$b23-02-17$c28-06-02 912 $a991001224819707536 945 $aLE013 68T GRE11 V.I (1976)$cV. 1$g1$i2013000033402$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10924735$z28-06-02 996 $aPattern synthesis$9925073 997 $aUNISALENTO 998 $ale013$b01-01-95$cm$da $e-$feng$gus $h0$i1