LEADER 02332nam 2200529 450 001 9910480982903321 005 20170822144306.0 010 $a1-4704-0314-5 035 $a(CKB)3360000000464905 035 $a(EBL)3114503 035 $a(SSID)ssj0000976578 035 $a(PQKBManifestationID)11623414 035 $a(PQKBTitleCode)TC0000976578 035 $a(PQKBWorkID)11034876 035 $a(PQKB)10710689 035 $a(MiAaPQ)EBC3114503 035 $a(PPN)195416074 035 $a(EXLCZ)993360000000464905 100 $a20010327d2001 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSurfaces with K2=7 and pg=4 /$fIngrid C. Bauer 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2001. 215 $a1 online resource (79 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 721 300 $aDescription based upon print version of record. 311 $a0-8218-2689-1 320 $aIncludes bibliographical references (pages 78-79). 327 $a""Contents""; ""Introduction""; ""Chapter 1. The canonical system""; ""Chapter 2. Some known results""; ""Chapter 3. Surfaces with K[sup(2)] = 7, p[sub(g)] = 4, such that the canonical system doesn't have a fixed part""; ""3.1. Surfaces of type (I.1)""; ""3.2. Surfaces of type (I.2)""; ""3.3. Surfaces of type (I.3)""; ""3.4. Surfaces of type (III)""; ""Chapter 4. |K| has a (non trivial) fixed part""; ""4.1. Surfaces of type (F)""; ""4.2. Surfaces of type (F')""; ""Chapter 5. The moduli space"" 327 $a""5.1. The ""fine"" classification of surfaces with K[sup(2)sub(S)] = 7 and p[sub(g)] = 4 (revisited)""""5.2. Counting the number of moduli""; ""5.3. The irreducible components of the moduli space""; ""5.4. The fundamental group""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 721. 606 $aSurfaces, Algebraic 608 $aElectronic books. 615 0$aSurfaces, Algebraic. 676 $a510 s 676 $a516.3/52 700 $aBauer$b Ingrid C.$f1967-$0902310 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480982903321 996 $aSurfaces with K2=7 and pg=4$92016956 997 $aUNINA