LEADER 05449nam 2200649Ia 450 001 9910480952503321 005 20200428202520.0 010 $a1-281-79535-6 010 $a9786611795351 010 $a0-08-054222-0 035 $a(CKB)1000000000384920 035 $a(EBL)405421 035 $a(OCoLC)476222811 035 $a(SSID)ssj0000255053 035 $a(PQKBManifestationID)12048218 035 $a(PQKBTitleCode)TC0000255053 035 $a(PQKBWorkID)10212819 035 $a(PQKB)10610025 035 $a(MiAaPQ)EBC405421 035 $a(EXLCZ)991000000000384920 100 $a20000509d2000 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTable of integrals, series, and products$b[electronic resource] /$fI.S. Gradshteyn and I.M. Ryzhik ; Alan Jeffrey, editor ; Daniel Zwillinger, associate editor ; translated from the Russian by Scripta Technica, Inc 205 $a6th ed. 210 $aSan Diego $cAcademic Press$dc2000 215 $a1 online resource (1213 p.) 300 $aDescription based upon print version of record. 311 $a0-12-294757-6 320 $aIncludes bibliographical references (p. 1133-1142) and indexes. 327 $aFront Cover; Table of Integrals, Series, and Products; Copyright Page; Contents; Preface to the Sixth Edition; Acknowledgments; The order of presentation of the formulas; Use of the tables; Special functions; Notation; Note on the bibliographic references; Chapter 0. Introduction; 0.1 Finite sums; 0.2 Numerical series and infinite products; 0.3 Functional series; 0.4 Certain formulas from differential calculus; Chapter 1. Elementary Functions; 1.1 Power of Binomials; 1.2 The Exponential Function; 1.3-1.4 Trigonometric and Hyperbolic Functions; 1.5 The Logarithm 327 $a1.6 The Inverse Trigonometric and Hyperbolic FunctionsChapter 2. Indefinite Integrals of Elementary Functions; 2.0 Introduction; 2.1 Rational functions; 2.2 Algebraic functions; 2.3 The Exponential Function; 2.4 Hyperbolic Functions; 2.5-2.6 Trigonometric Functions; 2.7 Logarithms and Inverse-Hyperbolic Functions; 2.8 Inverse Trigonometric Functions; Chapter 3-4. Definite Integrals of Elementary Functions; 3.0 Introduction; 3.1-3.2 Power and Algebraic Functions; 3.3-3.4 Exponential Functions; 3.5 Hyperbolic Functions; 3.6-4.1 Trigonometric Functions; 4.2-4.4 Logarithmic Functions 327 $a4.5 Inverse Trigonometric Functions4.6 Multiple Integrals; Chapter 5. Indefinite Integrals of Special Functions; 5.1 Elliptic Integrals and Functions; 5.2 The Exponential Integral Function; 5.3 The Sine Integral and the Cosine Integral; 5.4 The Probability Integral and Fresnel Integrals; 5.5 Bessel Functions; Chapter 6-7. Definite Integrals of Special Functions; 6.1 Elliptic Integrals and Functions; 6.2-6.3 The Exponential Integral Function and Functions Generated by It; 6.4 The Gamma Function and Functions Generated by It; 6.5-6.7 Bessel Functions; 6.8 Functions Generated by Bessel Functions 327 $a6.9 Mathieu Functions7.1-7.2 Associated Legendre Functions; 7.3-7.4 Orthogonal Polynomials; 7.5 Hypergeometric Functions; 7.6 Confluent Hypergeometric Functions; 7.7 Parabolic Cylinder Functions; 7.8 Meijer's and MacRobert's Functions (G and E); Chapter 8-9. Special Functions; 8.1 Elliptic integrals and functions; 8.2 The Exponential Integral Function and Functions Generated by It; 8.3 Euler's Integrals of the First and Second Kinds; 8.4-8.5 Bessel Functions and Functions Associated with Them; 8.6 Mathieu Functions; 8.7-8.8 Associated Legendre Functions; 8.9 Orthogonal Polynomials 327 $a9.1 Hypergeometric Functions9.2 Confluent Hypergeometric Functions; 9.3 Meijer's G-Function; 9.4 MacRobert's E-Function; 9.5 Riemann's Zeta Functions (z, q), and (z), and the Functions F (z; s; v) and .(s); 9.6 Bernoulli numbers and polynomials, Euler numbers; 9.7 Constants; Chapter 10. Vector Field Theory; 10.1-10.8 Vectors, Vector Operators, and Integral Theorems; Chapter 11. Algebraic Inequalities; 11.1-11.3 General Algebraic Inequalities; Chapter 12. Integral Inequalities; 12.11 Mean value theorems; 12.21 Differentiation of definite integral containing a parameter 327 $a12.31 Integral inequalities 330 $aThe Table of Integrals, Series, and Products is the major reference source for integrals in the English language.It is designed for use by mathematicians, scientists, and professional engineers who need to solve complex mathematical problems.*Completely reset edition of Gradshteyn and Ryzhik reference book*New entries and sections kept in orginal numbering system with an expanded bibliography*Enlargement of material on orthogonal polynomials, theta functions, Laplace and Fourier transform pairs and much more.orthogonal polynomials, theta functions, Laplace and Fourier tr 606 $aMathematics$vTables 606 $aLogarithms 608 $aElectronic books. 615 0$aMathematics 615 0$aLogarithms. 676 $a515.0212 676 $a515/.0212 21 700 $aGradshtei?n$b I. S$g(Izrail? Solomonovich)$057353 701 $aRyzhik$b I. M$g(Iosif Moiseevich)$0736525 701 $aJeffrey$b Alan$0344412 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480952503321 996 $aTable of integrals, series, and products$92009909 997 $aUNINA