LEADER 06601nam 22007455 450 001 9910480837003321 005 20200629201654.0 010 $a3-642-58407-1 024 7 $a10.1007/978-3-642-58407-7 035 $a(CKB)2660000000027476 035 $a(SSID)ssj0000930901 035 $a(PQKBManifestationID)11513971 035 $a(PQKBTitleCode)TC0000930901 035 $a(PQKBWorkID)10853435 035 $a(PQKB)10735254 035 $a(DE-He213)978-3-642-58407-7 035 $a(MiAaPQ)EBC3089878 035 $a(PPN)237915715 035 $a(EXLCZ)992660000000027476 100 $a20110923d1999 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aCeramics$b[electronic resource] $eMechanical Properties, Failure Behaviour, Materials Selection /$fby Dietrich Munz, Theo Fett 205 $a1st ed. 1999. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1999. 215 $a1 online resource (X, 299 p.) 225 1 $aSpringer Series in Materials Science,$x0933-033X ;$v36 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-65376-7 311 $a3-642-63580-6 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $a1 Overview and Basic Properties -- 1.1 General Behaviour -- 1.2 Overview of Ceramic Materials -- 1.3 Fields of Application -- 2 Physical Properties -- 2.1 Thermal Expansion Coefficient -- 2.2 Thermal Conductivity -- 2.3 Electrical Conductivity -- 2.4 Specific Heat -- 2.5 Density -- 2.6 Elastic Constants -- 3 Fracture Mechanics -- 3.1 Fundamentals -- 3.2 Experimental Methods for the Determination of the Mode-I Fracture Toughness KIc -- 3.3 Experimental Methods for the Determination of Mode-II and Mixed-Mode Fracture Toughness -- 3.4 Mixed-Mode Criteria and Experimental Results -- 4 R-Curve Behaviour -- 4.1 Experimental Observation -- 4.2 Determination of R-Curves -- 4.3 Reasons for R-Curve Behaviour -- 4.4 Influence of R-Curves on Strength -- 4.5 Computation of R-Curves -- 4.6 Determination of Bridging Stresses from Crack Profiles -- 5 Subcritical Crack Growth -- 5.1 Basic Relations -- 5.2 Computation of Lifetimes -- 5.3 Methods of Determining Subcritical Crack Growth -- 5.4 Influence of R-Curve Behaviour on Subcritical Crack Growth -- 5.5 Some Theoretical Considerations on Subcritical Crack Growth -- 6 Cyclic Fatigue -- 6.1 Representation of Cyclic Fatigue Results -- 6.2 Proof of a Cyclic Effect -- 6.3 Methods for the Determination of da/dN-?K Curves -- 6.4 Effect of R-Ratio -- 6.5 Theoretical Considerations -- 6.6 Differences Between Micro- and Macrocracks -- 7 Determination of Strength -- 7.1 Measurement of Tensile Strength -- 7.2 Measurement of Compressive Strength -- 8 Scatter of Mechanical Properties -- 8.1 Principal Behaviour -- 8.2 Determination of Weibull Parameters -- 8.3 The Size Effect -- 8.4 Scatter of Lifetimes -- 8.5 Some Specific Problems -- 9 Proof Test Procedure -- 9.1 Proof Test Without Subcritical Crack Growth -- 9.2 Proof Test Including Subcritical Crack Growth -- 9.3 Problems in Proof Tests -- 10 Multiaxial Failure Criteria -- 10.1 Representation in Multiaxiality Diagrams -- 10.2 Global Multiaxiality Criteria -- 10.3 Defect Models -- 10.4 Experimental Methods -- 10.5 Experimental Results -- 11 Thermal Shock Behaviour -- 11.1 Thermal Stresses -- 11.2 Measurement of Thermal Shock Sensitivity -- 11.3 Fracture Mechanical Treatment of Thermal Shock -- 11.4 Thermal Shock Parameters -- 11.5 Size Effect in Thermal Shock -- 11.6 Thermal Fatigue -- 12 High-Temperature Behaviour -- 12.1 Creep Deformation -- 12.2 Failure in the Creep Range -- 12.3 Creep Crack Growth -- 13 Plasticity -- 13.1 Plasticity During Contact Loading -- 13.2 Plasticity During Surface Grinding -- 13.3 Plasticity by Phase Transformation in Zirconia -- 13.4 Plasticity by Domain Switching in Piezoelectric Ceramics -- 13.5 Measurement of Plastic Deformations in Bending Tests -- 13.6 Time-Dependent Plasticity Effects -- A.1 Rectangular Bar -- A.2 Comact-Tension (CT) Specimen -- A.3 Round Compact Tension (RCT) Specimen -- A.4 Double-Cantilever-Beam Specimen (DCB) -- A.5 Weight Function for Chevron-Notched Bending Bars -- A.6 Specimens for Mixed-Mode Tests. 330 $aCeramic materials are widely used as components in a great variety of applications. They are attractive due to their good high temperature strength, high wear resistance, good corrosion restistance and other special physical properties. Their major drawback is their brittleness and the large scatter of mechanical properties. This book describes failure phenomena in ceramic materials under mechanical loading, methods for determining the material properties, and the principles that one should apply when selecting a material. The fracture-mechanical and statistical principles and their use in describing the scatter of strength and lifetime are also covered. Special chapters are devoted to creep behaviour, multiaxial failure criteria and thermal shock behaviour. 410 0$aSpringer Series in Materials Science,$x0933-033X ;$v36 606 $aIndustrial engineering 606 $aProduction engineering 606 $aMaterials science 606 $aMechanics 606 $aMechanics, Applied 606 $aIndustrial and Production Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T22008 606 $aMaterials Science, general$3https://scigraph.springernature.com/ontologies/product-market-codes/Z00000 606 $aCharacterization and Evaluation of Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z17000 606 $aTheoretical and Applied Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15001 615 0$aIndustrial engineering. 615 0$aProduction engineering. 615 0$aMaterials science. 615 0$aMechanics. 615 0$aMechanics, Applied. 615 14$aIndustrial and Production Engineering. 615 24$aMaterials Science, general. 615 24$aCharacterization and Evaluation of Materials. 615 24$aTheoretical and Applied Mechanics. 676 $a620.1/4 700 $aMunz$b Dietrich$4aut$4http://id.loc.gov/vocabulary/relators/aut$0936037 702 $aFett$b Theo$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480837003321 996 $aCeramics$92108692 997 $aUNINA