LEADER 03200nam 2200589 450 001 9910480748903321 005 20170821172555.0 010 $a1-4704-0727-2 035 $a(CKB)3360000000464498 035 $a(EBL)3113905 035 $a(SSID)ssj0000888780 035 $a(PQKBManifestationID)11465738 035 $a(PQKBTitleCode)TC0000888780 035 $a(PQKBWorkID)10865782 035 $a(PQKB)10909006 035 $a(MiAaPQ)EBC3113905 035 $a(PPN)195411951 035 $a(EXLCZ)993360000000464498 100 $a20140903h19851985 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAttractors representing turbulent flows /$fP. Constantin, C. Foias?, and R. Temam 210 1$aProvidence, Rhode Island, United States :$cAmerican Mathematical Society,$d1985. 210 4$dİ1985 215 $a1 online resource (79 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 53, Number 314 300 $a"January 1985, Volume 53, Number 314 (first of 5 numbers)"--Cover. 311 $a0-8218-2315-9 320 $aIncludes bibliographical references. 327 $a""TABLE OF CONTENTS""; ""INTRODUCTION""; ""CHAPTER 1 a??? ON THE APPEARANCE OF SINGULARITIES IN A THREE DIMENSIONAL FLOW""; ""1.1. The functional setting of the Navier-Stokes Equations""; ""1.2. The initial value problem""; ""1.3. The main resul (of Chapter 1)""; ""CHAPTER 2 a??? THE SQUEEZING PROPERTY FOR THE TRAJECTORIES""; ""2.1. Quotient of norms""; ""2.2. The squeezing property""; ""2.3. An application of the squeezing : image of a ball""; ""CHAPTER 3 a??? HAUSDORFF AND FRACTAL DIMENSIONS OF AN ATTRACTOR""; ""3.1. The Hausdorff dimension""; ""3.2. Covering Lemmas"" 327 $a""3.3. Proof of Theorem 3.1""""3.4. The fractal dimension""; ""3.5. Lyapunov exponents and Lyapunov numbers""; ""3.6. Application to evolution equations""; ""CHAPTER 4 a??? NUMBER OF DEGREES OF FREEDOM OF A THREE DIMENSIONAL FLOW""; ""4.1. Attractors for three dimensional flows""; ""4.2. Estimate of the fractal dimension of an attractor""; ""4.3. Explicit values of the bound of the dimension""; ""4.3.a. Estimate of the number of degrees of freedom in term of the Kolmogorov dissipation length""; ""4.3.b. Estimate in term of a Reynolds number""; ""4.3.c. Another Reynold number"" 327 $a""4.3.d. A Reynold number based on the enstrophy""""4.4. Other aspects of the finite dimensionality of 3-D turbulent flows""; ""4.5. Consequences of the Lieb-Thirring's inequality""; ""REFERENCES"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 53, Number 314. 606 $aTurbulence 606 $aNavier-Stokes equations 608 $aElectronic books. 615 0$aTurbulence. 615 0$aNavier-Stokes equations. 676 $a532/.0527 700 $aConstantin$b P$g(Peter),$f1951-$0988340 702 $aFoias?$b Ciprian 702 $aTemam$b Roger 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480748903321 996 $aAttractors representing turbulent flows$92260073 997 $aUNINA