LEADER 02195nam 2200505 450 001 9910480729003321 005 20170816143321.0 010 $a0-8218-9969-4 035 $a(CKB)3360000000463986 035 $a(EBL)3113516 035 $a(SSID)ssj0000973569 035 $a(PQKBManifestationID)11948255 035 $a(PQKBTitleCode)TC0000973569 035 $a(PQKBWorkID)10984567 035 $a(PQKB)11481926 035 $a(MiAaPQ)EBC3113516 035 $a(PPN)195409108 035 $a(EXLCZ)993360000000463986 100 $a20750515d1957 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe generalized Pontrjagin cohomology operations and rings with divided powers /$fby Emery Thomas 210 1$aProvidence :$cAmerican Mathematical Society,$d1957. 215 $a1 online resource (86 p.) 225 1 $aMemoirs of the American Mathematical Society ;$vnumber 27 300 $aCover title. 311 $a0-8218-1227-0 320 $aBibliography: pages 81-82. 327 $a""INTRODUCTION""; ""1. THE MAIN THEOREMS""; ""2. THE MODEL OPERATIONS, P[sub(t)] (t = 0, 1, ...)""; ""3. THE DEFINITION OF THE OPERATIONS [omitted][sub(t)]""; ""4. THE PROOF OF THE MAIN THEOREMS""; ""5. DEFINITION OF THE MODEL OPERATIONS P[sub(p)], (p prime)""; ""6. REMARKS ON CUP-PRODUCTS""; ""7. THE CASE OF DIMENSION A?« ODD""; ""8. THE DEFINITION OF THE OPERATIONS P[sub(r)]""; ""9. THE OPERATION P[sub(p)] ON A SUM""; ""10. PROOF OF THEOREM 2.1(i), (ii), AND (iii)""; ""11. PROOF OF THEOREM 2.1(iv)""; ""12. PROOF OF THEOREM 2.1(v), (vi), AND (vii)""; ""13. PROOF OF THEOREMS 2.2 AND 2.3"" 327 $a""APPENDIX: COMPUTATION OF THE OPERATIONS [omitted][sub(t)]""""BIBLIOGRAPHY"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 27. 606 $aTopology 608 $aElectronic books. 615 0$aTopology. 700 $aThomas$b Emery$056418 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480729003321 996 $aThe generalized Pontrjagin cohomology operations and rings with divided powers$92218906 997 $aUNINA