LEADER 01065nam0-22003731i-450- 001 990001480360403321 010 $a3-387-98948-X 035 $a000148036 035 $aFED01000148036 035 $a(Aleph)000148036FED01 035 $a000148036 100 $a--------d--------km-y0itay50------ba 101 0 $aeng 102 $aDE 105 $aa---a---001yy 200 1 $a<>introduction to Riemann-Finsler geometry$fD. Bao, S.S. Chern, Z. Shen 210 $aNew York$cSpringer$dc2000 215 $axx, 431 p.$cill.$d24 cm 225 1 $aGraduate texts in mathematics$v2000 610 0 $aSpazi di finsler 610 0 $aStrutture riemanniane 676 $a516.373$v21 700 1$aBao,$bDavid$061116 701 1$aChern,$bShiing-Shen$f<1911-2004>$045718 701 1$aShen,$bZ.$0352120 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001480360403321 952 $aC-12-(200$b17672$fMA1 959 $aMA1 962 $a53C60 962 $a58B20 996 $aIntroduction to Riemann-Finsler geometry$9378644 997 $aUNINA LEADER 02330nam 2200565 450 001 9910480727803321 005 20180613001252.0 010 $a1-4704-0690-X 035 $a(CKB)3360000000464464 035 $a(EBL)3113578 035 $a(SSID)ssj0000910352 035 $a(PQKBManifestationID)11514266 035 $a(PQKBTitleCode)TC0000910352 035 $a(PQKBWorkID)10932008 035 $a(PQKB)11570079 035 $a(MiAaPQ)EBC3113578 035 $a(PPN)195411625 035 $a(EXLCZ)993360000000464464 100 $a19830222h19831983 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAlgebraic K-theory and localised stable homotopy theory /$fVictor Snaith 210 1$aProvidence, R.I., USA :$cAmerican Mathematical Society,$d[1983] 210 4$dİ1983 215 $a1 online resource (116 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 280 300 $aDescription based upon print version of record. 311 $a0-8218-2280-2 320 $aBibliography: pages 98-102. 327 $a""A?III.1: The descent spectral sequence in localised equivariant stable homotopy""""A?III.2: Some examples of representatives and differentials in the spectral sequence""; ""A?III.3: Examples of the descent spectral sequence""; ""Part IV a??? Further applications to algebraic K-theory""; ""A?IV.1: Thomason's Cech construction, H(X; F) and K[sup(top)][sub(*)](X)""; ""A?IV.2: K-theory eventually surjects onto K[sup(top)] for local/global fields and their algebraic integers""; ""A?IV.3: An upper bound for (Bott periodic) algebraic K-theory"" 327 $a""A?IV.4: Bott periodic algebraic K-theory and the class group""""References"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 280. 606 $aK-theory 606 $aHomotopy theory 608 $aElectronic books. 615 0$aK-theory. 615 0$aHomotopy theory. 676 $a510 s 676 $a514/.23 700 $aSnaith$b Victor P$g(Victor Percy),$f1944-$058899 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480727803321 996 $aAlgebraic K-theory and localised stable homotopy theory$91922456 997 $aUNINA