LEADER 02285nam 2200565 450 001 9910480702203321 005 20170816143302.0 010 $a1-4704-0740-X 035 $a(CKB)3360000000464510 035 $a(EBL)3113776 035 $a(SSID)ssj0000888910 035 $a(PQKBManifestationID)11525288 035 $a(PQKBTitleCode)TC0000888910 035 $a(PQKBWorkID)10875126 035 $a(PQKB)10926870 035 $a(MiAaPQ)EBC3113776 035 $a(PPN)195412087 035 $a(EXLCZ)993360000000464510 100 $a20140902h19851985 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aExceptional Weierstrass points and the divisor on moduli space that they define /$fSteven Diaz 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1985. 210 4$d©1985 215 $a1 online resource (76 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 56, Number 327 300 $a"July 1985, Volume 56, Number 327 (first of two numbers)." 311 $a0-8218-2328-0 320 $aIncludes bibliographical references. 327 $a""Table of Contents""; ""1. Introduction""; ""2. Preliminaries""; ""3. One Parameter Families""; ""4. Weierstrass Points, Porteous's Formula, and D[sub(g-1 ,g-1)]""; ""5. A Compactification of the Hurwitz Scheme""; ""6. Some Ennumerative Problems""; ""7. The Class of D[sub(g-1 ,g-1)]""; ""Appendices 1. Exceptional Weierstrass Points of Type g+1""; ""Appendices 2. Weierstrass Points on Singular Curves""; ""Appendices 3. Complete Families of Smooth Curves of Genus 3"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 56, Number 327. 606 $aCurves, Algebraic 606 $aModuli theory 606 $aWeierstrass points 608 $aElectronic books. 615 0$aCurves, Algebraic. 615 0$aModuli theory. 615 0$aWeierstrass points. 676 $a512/.33 700 $aDiaz$b Steven$f1957-$0917920 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480702203321 996 $aExceptional Weierstrass points and the divisor on moduli space that they define$92058213 997 $aUNINA LEADER 01279nam a2200277 i 4500 001 991000707739707536 008 041216s2000 gw a b 001 0 eng d 020 $a3540652728$cLire 141.600 035 $ab13260893-39ule_inst 040 $aDip.to Ingegneria dell'Innovazione$bita 082 0 $a621.38224 100 1 $aHaus, Hermann A.$049773 245 10$aElectromagnetic noise and quantum optical measurements /$cHermann A. Haus 260 $aBerlin ;$aNew York :$bSpringer,$cc2000. 300 $axv, 562 p. :$bill. ;$c24 cm. 440 0$aAdvanced texts in physics 504 $aInclude riferimenti bibliografici e indice 650 4$aOttica quantistica$xMisure 650 4$aCircuiti elettronici$xRumore 907 $a.b13260893$b09-03-22$c16-12-04 912 $a991000707739707536 945 $aLE026 621.38224 HAU 01.01 C.1 2000$cC.1$g1$i2026000013473$lle026$nProf. Reggiani / Biblioteca$op$pE141.60$q-$rl$s- $t4$u1$v1$w1$x0$y.i13966637$z16-12-04 945 $aLE026 621.38224 HAU 01.01 C.2 2000$cC.2 $g1$i2026000021973$lle026$nProf. Reggiani / Biblioteca$op$pE103.29$q-$rl$s- $t4$u0$v0$w0$x0$y.i15539076$z11-10-13 996 $aElectromagnetic noise and quantum optical measurements$91106184 997 $aUNISALENTO 998 $ale026$b16-12-04$cm$da $e-$feng$ggw $h0$i0 LEADER 00984nam a2200217 i 4500 001 991000781319707536 005 20020507173518.0 008 950718s1980 ||| ||| | ita 035 $ab10756450-39ule_inst 035 $aLE01302235$9ExL 040 $aDip.to Matematica$beng 100 1 $aTommasi, L.$0534997 245 10$aConfronto ed oscillazione per equazioni differenziali del secondo ordine. Tesi di laurea /$claureando L. Tommasi ; relat. E. Pascali 260 $aLecce :$bUniversitą degli studi. Facoltą di Scienze. Corso di laurea in Matematica,$ca.a. 1980-81 700 1 $aPascali, Eduardo 907 $a.b10756450$b02-04-14$c28-06-02 912 $a991000781319707536 945 $aLE013 TES 1980/81 TOM1$g1$i2013000032320$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1085082x$z28-06-02 996 $aConfronto ed oscillazione per equazioni differenziali del secondo ordine. Tesi di laurea$9911234 997 $aUNISALENTO 998 $ale013$b01-01-95$cm$da $e-$feng$gxx $h0$i1