LEADER 02786nam 2200577 450 001 9910480684303321 005 20170821172544.0 010 $a1-4704-0753-1 035 $a(CKB)3360000000464523 035 $a(EBL)3113825 035 $a(SSID)ssj0000973230 035 $a(PQKBManifestationID)11602787 035 $a(PQKBTitleCode)TC0000973230 035 $a(PQKBWorkID)10959564 035 $a(PQKB)10348407 035 $a(MiAaPQ)EBC3113825 035 $a(PPN)195412222 035 $a(EXLCZ)993360000000464523 100 $a20140904h19861986 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aImplication in Morava K-theory /$fRichard M. Kane 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1986. 210 4$d©1986 215 $a1 online resource (118 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 59, Number 340 300 $aDescription based upon print version of record. 311 $a0-8218-2342-6 320 $aIncludes bibliographical references. 327 $a""Table of Contents""; ""Introduction""; ""Chapter I: Hopf Algebras""; ""1. Primitives and Indecomposables""; ""2. The Steenrod Algebra and Eilenberg-MacLane Spaces""; ""3. The Homology and Cohomology of Finite H-Spaces""; ""Chapter II: Morava K-Theory""; ""4. The Module Tor(n)""; ""5. Implications in k(n) Theory""; ""6. Simple Systems for B[sub(r)]""; ""Chapter III: The Primitive Case of the Main Theorem""; ""7. The Primitive Case of the Main Theorem""; ""8. The Hopf Algebra I??""; ""9. The Extended Induction Hypothesis""; ""10. Proof of Proposition 7.9""; ""Chapter IV: The Space X"" 327 $a""11. The Space X""""12. The Eilenberg-Moore Spectral Sequence for X""; ""13. The Map h*""; ""14. The Hopf Algebra I?©""; ""15. The Hopf Algebra H*X//I??""; ""16. The Action of A(2) on QH*X""; ""Chapter V: The General Case of the Main Theorem""; ""17. The General Case of the Main Theorem""; ""18. Proof of Lemma 17.11""; ""19. Proof of Lemma 17.12""; ""Chapter VI: Footnotes""; ""20. The Case p odd""; ""21. The Case AdE[sub(7)]""; ""References"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 59, Number 340. 606 $aK-theory 606 $aSteenrod algebra 606 $aSpectral sequences (Mathematics) 608 $aElectronic books. 615 0$aK-theory. 615 0$aSteenrod algebra. 615 0$aSpectral sequences (Mathematics) 676 $a510 s 700 $aKane$b Richard M.$f1944-$055375 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480684303321 996 $aImplication in Morava K-theory$92108674 997 $aUNINA LEADER 01275nam a2200349 i 4500 001 991000838689707536 005 20020507174259.0 008 960110s1994 us ||| | eng 020 $a0821869914 035 $ab10764392-39ule_inst 035 $aLE01303102$9ExL 040 $aDip.to Matematica$beng 082 0 $a514.74 084 $aAMS 58F03 084 $aAMS 58F11 084 $aAMS 58F20 084 $aQA614.8.R837 100 1 $aRuelle, David$017735 245 10$aDynamical zeta functions for piecewise monotone maps of the interval /$cDavid Ruelle 260 $aProvidence, R. I. :$bAmerican Mathematical Society,$cc1994 300 $avii, 62 p. :$bill. ;$c27 cm. 490 0 $aCRM monograph series, ISSN 10658599 ;$v4 500 $aIncludes bibliographical references (p. 61-62). 650 4$aDifferentiable dynamical systems 650 4$aMappings 650 4$aMonotone operators 907 $a.b10764392$b23-02-17$c28-06-02 912 $a991000838689707536 945 $aLE013 58F RUE12 (1994)$g1$i2013000043036$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10859925$z28-06-02 996 $aDynamical Zeta Functions for Piecewise Monotone Maps of the Interval$9375558 997 $aUNISALENTO 998 $ale013$b01-01-96$cm$da $e-$feng$gus $h0$i1