LEADER 02433nam 2200601 450 001 9910480648903321 005 20180731045132.0 010 $a1-4704-0608-X 035 $a(CKB)3360000000465175 035 $a(EBL)3114178 035 $a(SSID)ssj0000889166 035 $a(PQKBManifestationID)11493927 035 $a(PQKBTitleCode)TC0000889166 035 $a(PQKBWorkID)10875176 035 $a(PQKB)10469966 035 $a(MiAaPQ)EBC3114178 035 $a(PPN)195418808 035 $a(EXLCZ)993360000000465175 100 $a20150417h20102010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aQ-valued functions revisited /$fCamillo De Lellis, Emanuele Nunzio Spadaro 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2010. 210 4$dİ2010 215 $a1 online resource (79 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 211, Number 991 300 $a"Volume 211, Number 991 (first of 5 numbers)." 311 $a0-8218-4914-X 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Introduction""; ""Chapter 1. The elementary theory of Q-valued functions""; ""1.1. Decomposition and selection for Q-valued functions""; ""1.2. Extension of Lipschitz Q-valued functions""; ""1.3. Differentiability and Rademacher's Theorem""; ""Chapter 2. Almgren's extrinsic theory""; ""2.1. The biLipschitz embedding and the retraction ""; ""2.2. Properties of Q-valued Sobolev functions""; ""2.3. Existence of Dir-minimizing Q-valued functions""; ""Chapter 3. Regularity theory""; ""3.1. First variations""; ""3.2. A maximum principle for Q-valued functions"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 211, Number 991. 606 $aDirichlet principle 606 $aGeometric measure theory 606 $aMetric space 606 $aHarmonic maps 608 $aElectronic books. 615 0$aDirichlet principle. 615 0$aGeometric measure theory. 615 0$aMetric space. 615 0$aHarmonic maps. 676 $a515.9 700 $aDe Lellis$b Camillo$0471661 702 $aSpadaro$b Emanuele Nunzio$f1983- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480648903321 996 $aQ-valued functions revisited$92211408 997 $aUNINA