LEADER 01097nam--2200385---450- 001 990000611490203316 035 $a0061149 035 $aUSA010061149 035 $a(ALEPH)000061149USA01 035 $a0061149 100 $a20010906d1983----km-y0itay0103----ba 101 $aeng 102 $aUS 105 $a||||||||001yy 200 1 $a<> Symmetry Primer for Scientist 210 $aNew York$cJ. Wiley & Sons$dc1983 215 $aXIV, 192 p.$d23 cm 225 2 $aA Wiley-Interscience Publication 410 $12001$aA Wiley-Interscience Publication 454 $12001 610 0 $aSimmetria 610 0 $aGruppi Teorie 676 $a500. 700 1$aROSEN,$bJoe$058652 801 0$aIT$bsalbc$gISBD 912 $a990000611490203316 951 $a500 ROS B$b14978 CBS$c500 ROS$d00107793 951 $a500 ROS A$b13732 CBS$c500 ROS$d00107794 959 $aBK 969 $aSCI 979 $aPATTY$b90$c20010906$lUSA01$h1550 979 $c20020403$lUSA01$h1710 979 $aPATRY$b90$c20040406$lUSA01$h1642 996 $aSymmetry Primer for Scientist$9957367 997 $aUNISA LEADER 03166nam 2200601 450 001 9910480621803321 005 20170822144322.0 010 $a1-4704-1058-3 035 $a(CKB)3780000000000153 035 $a(EBL)3114146 035 $a(SSID)ssj0000938805 035 $a(PQKBManifestationID)11501969 035 $a(PQKBTitleCode)TC0000938805 035 $a(PQKBWorkID)10926590 035 $a(PQKB)10749822 035 $a(MiAaPQ)EBC3114146 035 $a(PPN)19540842X 035 $a(EXLCZ)993780000000000153 100 $a20150417h20132013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$a3-manifold groups are virtually residually p /$fMatthias Aschenbrenner, Stefan Friedl 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2013. 210 4$dİ2013 215 $a1 online resource (114 p.) 225 1 $aMemoirs of the American Mathematical Society,$x1947-6221 ;$vVolume 225, Number 1058 300 $a"Volume 225, Number 1058 (third of 4 numbers)." 311 $a0-8218-8801-3 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""Introduction""; ""The main result""; ""Applications""; ""Properties of linear groups and 3-manifold groups""; ""Outline of the proof strategy""; ""A more general theorem?""; ""Graph manifolds""; ""Guide for the reader""; ""Conventions and notations""; ""Acknowledgments""; ""Chapter 1. Preliminaries""; ""1.1. Filtrations of groups""; ""1.2. Graphs of groups""; ""Chapter 2. Embedding Theorems for -Groups""; ""2.1. An amalgamation theorem for filtered -groups""; ""2.2. Extending partial automorphisms to inner automorphisms"" 327 $a""Chapter 3. Residual Properties of Graphs of Groups""""3.1. Root properties and fundamental groups of graphs of groups""; ""3.2. A criterion for being residually ""; ""3.3. Unfolding a graph of groups""; ""3.4. A criterion for being virtually residually ""; ""Chapter 4. Proof of the Main Results""; ""4.1. -compatible filtrations""; ""4.2. -compatible filtrations of linear groups""; ""4.3. Proof of the main theorem""; ""4.4. A localization theorem""; ""4.5. Fibered 3-manifolds""; ""Chapter 5. The Case of Graph Manifolds""; ""5.1. -efficiency""; ""5.2. Cohomological -completeness"" 327 $a""5.3. Virtual -efficiency for arbitrary 3-manifolds?""""5.4. The mod homology graph""; ""Bibliography""; ""Index"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 225, Number 1058. 606 $aGroup theory 606 $aThree-manifolds (Topology) 606 $aFundamental groups (Mathematics) 608 $aElectronic books. 615 0$aGroup theory. 615 0$aThree-manifolds (Topology) 615 0$aFundamental groups (Mathematics) 676 $a514.34 700 $aAschenbrenner$b Matthias$f1972-$0766973 702 $aFriedl$b Stefan$f1973- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480621803321 996 $a3-manifold groups are virtually residually p$92113197 997 $aUNINA