LEADER 02512nam 2200565Ia 450 001 9910480553203321 005 20170815154723.0 010 $a1-282-38738-3 010 $a9786612387388 010 $a90-485-0790-1 035 $a(CKB)1000000000817803 035 $a(EBL)474318 035 $a(OCoLC)489056404 035 $a(SSID)ssj0000340044 035 $a(PQKBManifestationID)12069377 035 $a(PQKBTitleCode)TC0000340044 035 $a(PQKBWorkID)10387571 035 $a(PQKB)10769631 035 $a(MiAaPQ)EBC474318 035 $a(EXLCZ)991000000000817803 100 $a20100619d2008 uy 0 101 0 $adut 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMamma, wat een zorg$b[electronic resource] /$fdoor Emiel Rutgers 210 $aAmsterdam $cVossiuspers UvA/Amsterdam University Press$d2008 215 $a1 online resource (32 p.) 225 1 $aVOR Geneeskunde 300 $a"Rede uitgesproken bij de aanvaarding van het ambt van bijzonder hoogleraar Heelkundige Oncologie, in het bijzonder de diagnostiek en de behandeling van het mammacarcinoom aan de Universiteit van Amsterdam op vrijdag 14 maart 2008." 311 $a90-5629-541-1 320 $aIncludes bibliographical references. 330 $aEmiel Rutgers spreekt in zijn oratie over de zorg voor borstkanker. Die zorg is groot en neemt toe, alsook het aantal patie?nten en de media-aandacht ervoor. De patie?nt is tegenwoordig mondiger en beter gei?nformeerd. Ook de overheid, zorgverzekeraars en de media worden kritischer. De medische wetenschap kan steeds meer: betere screening, betere diagnostiek, betere sparende behandelingen met betere genezingskansen, beter cosmetisch resultaat, betere prognosebepaling, betere chemotherapie en hormoonbehandelingen en betere herstelprogramma's na de behandeling. Daardoor wordt het percentage patie?nt 410 0$aVOR Geneeskunde 606 $aBreast$xCancer$xDiagnosis$xTechnological innovations 606 $aBreast$xCancer$xSurgery$xTechnological innovations 608 $aElectronic books. 615 0$aBreast$xCancer$xDiagnosis$xTechnological innovations. 615 0$aBreast$xCancer$xSurgery$xTechnological innovations. 676 $a610 676 $a616.994490754 700 $aRutgers$b Emiel$0854381 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480553203321 996 $aMamma, wat een zorg$91908031 997 $aUNINA LEADER 01195nam 2200253la 450 001 9910482316403321 005 20221108083755.0 035 $a(UK-CbPIL)2090297558 035 $a(CKB)5500000000090008 035 $a(EXLCZ)995500000000090008 100 $a20210618d1635 uy | 101 0 $adut 135 $aurcn||||a|bb| 200 10$aDe Vyerighe colom klaer vertoonende in vyftich onderscheydene curieuse caarten de XVII Nederlantsche Provincien alsmede de hartogen, houtvesters en graven van Vlaenderen, Hollandt ende Zelandt met desselfs beschryving$b[electronic resource] 210 $aAmsterdam $cJacob Aertsz Colom$d1635 215 $aOnline resource ([6], 211 p, 4°) 300 $aReproduction of original in Koninklijke Bibliotheek, Nationale bibliotheek van Nederland. 700 $aColom$b Jacob Aertsz$f1599-1673.$0869005 801 0$bUk-CbPIL 801 1$bUk-CbPIL 906 $aBOOK 912 $a9910482316403321 996 $aDe Vyerighe colom klaer vertoonende in vyftich onderscheydene curieuse caarten de XVII Nederlantsche Provincien alsmede de hartogen, houtvesters en graven van Vlaenderen, Hollandt ende Zelandt met desselfs beschryving$91940074 997 $aUNINA LEADER 05374nam 2200661Ia 450 001 9910141809803321 005 20230803030921.0 010 $a1-118-76117-0 010 $a1-118-76112-X 010 $a1-118-76114-6 035 $a(CKB)2670000000401989 035 $a(EBL)1323957 035 $a(OCoLC)854977100 035 $a(SSID)ssj0001034882 035 $a(PQKBManifestationID)11586777 035 $a(PQKBTitleCode)TC0001034882 035 $a(PQKBWorkID)11028913 035 $a(PQKB)10302674 035 $a(MiAaPQ)EBC1323957 035 $a(Au-PeEL)EBL1323957 035 $a(CaPaEBR)ebr10738691 035 $a(CaONFJC)MIL507242 035 $a(EXLCZ)992670000000401989 100 $a20111102d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLithium batteries and other electrochemical storage systems$b[electronic resource] /$fChristian Glaize, Sylvie Genies 210 $aHoboken, NJ $cJohn Wiley and Sons$d2013 215 $a1 online resource (374 p.) 225 1 $aISTE 300 $aIncludes index. 311 $a1-299-75991-2 311 $a1-84821-496-0 327 $aCover; Title Page; Contents; Preface; Acknowledgements; Introduction; Part 1. Storage Requirements Characteristics Of Secondary Batteries Examples Of Use; Chapter 1. Breakdown of Storage Requirements; 1.1. Introduction; 1.2. Domains of application for energy storage; 1.2.1. Starter batteries; 1.2.2. Traction batteries; 1.2.3. Stationary batteries; 1.2.4. Batteries for mobile or nomadic devices; 1.3. Review of storage requirements and appropriate technologies; 1.4. Conclusion; Chapter 2. Definitions and Measuring Methods; 2.1. Introduction; 2.2. Terminology; 2.2.1. Accumulator 327 $a2.2.2. Element, elementary cell, electrolyte2.2.3. Electrode, half-element, half-cell; 2.2.4. Oxidation, reduction, anode, cathode; 2.2.5. Active material; 2.2.6. Voltage; 2.2.7. Battery of accumulators, modules, packs, BMS; 2.3. Definitions of the characteristics; 2.3.1. Nominal voltage; 2.3.2. Voltage under current; 2.3.3. Capacities; 2.4. States of the battery; 2.4.1. Depth of discharge; 2.4.2. State of charge; 2.4.3. State of energy; 2.4.4. State of health; 2.4.5. State of function; 2.4.6. Theoretical gravimetric capacity; 2.4.7. Practical gravimetric capacity; 2.4.8. Volumetric capacity 327 $a2.4.9. Specific capacity2.4.10. Direct-current internal resistance and short-circuit current; 2.4.11. AC internal resistance; 2.4.12. Impedance, impedancemetry, impedance spectroscopy; 2.4.13. Stored energy and deliverable energy; 2.4.14. Gravimetric energy density; 2.4.15. Volumetric energy density; 2.4.16. Specific energy; 2.4.17. Gravimetric power and volumetric power; 2.5. Faradaic efficiency; 2.6. Self-discharge; 2.7. Acceptance current; 2.8. Conclusion; 2.9. Appendix 1: Nernst's law; 2.9.1. Redox potential of an electrode; 2.9.2. Electromotive force of an electrochemical cell 327 $a2.9.3. Nernst's law2.9.4. Activity of the species; 2.9.5. Example of the application of Nernst's law to a lithium secondary battery using the insertion mechanism; 2.10. Appendix 2: Double layer; 2.11. Appendix 3: Warburg impedance; 2.12. Solutions to the exercises in Chapter 2; Chapter 3. Practical Examples Using Electrochemical Storage; 3.1. Introduction; 3.1.1. Starter currents for internal combustion engines in cars; 3.1.2. Power required by a telecommunications transceiver in an isolated site; 3.1.3. House in an isolated site; 3.1.4. Currents in an operational electric car battery 327 $a3.1.5. Currents during the phase of recharging of batteries in electric cars3.1.6. Autonomous urban lighting; 3.2. Conclusion; 3.3. Solution to the exercises in Chapter 3; Part 2. Lithium Batteries; Chapter 4. Introduction to Lithium Batteries; 4.1. History of lithium batteries; 4.2. Categories of lithium batteries; 4.3. The different operational mechanisms for lithium batteries; 4.3.1. Intercalation (or insertion) materials; 4.3.2. Alloys; 4.3.3. Direction conversion materials; 4.3.4. Differences of voltage profiles between intercalation materials, alloys and conversion materials 327 $a4.3.5. Properties of the electrode materials 330 $a Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.