LEADER 03224nam 2200589 450 001 9910480533703321 005 20180613001253.0 010 $a1-4704-0717-5 035 $a(CKB)3360000000464488 035 $a(EBL)3114004 035 $a(SSID)ssj0000888888 035 $a(PQKBManifestationID)11523055 035 $a(PQKBTitleCode)TC0000888888 035 $a(PQKBWorkID)10875473 035 $a(PQKB)11093563 035 $a(MiAaPQ)EBC3114004 035 $a(PPN)195411854 035 $a(EXLCZ)993360000000464488 100 $a20140908h19841984 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDimensions of spaces of Siegel cusp forms of degree two and three /$fMinking Eie 210 1$aProvidence, Rhode Island, United States :$cAmerican Mathematical Society,$d1984. 210 4$dİ1984 215 $a1 online resource (194 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 50, Number 304 300 $a"July 1984, Volume 50, Number 304 (first of 3 numbers)"--Cover. 311 $a0-8218-2305-1 320 $aIncludes bibliographical references. 327 $a""2.3 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points (I)""""2.4 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points (II)""; ""2.5 Contributions from conjugacy classes of elements having a two-dimensional set of fixed points""; ""2.6 Contributions from conjugacy classes of unipotent elements""; ""2.7 A dimension formula for the vector space of cusp forms with respect to Sp (2 , Z)""; ""CHAPTER III: REPRESENTATIVES OF CONJUGACY CLASSES OF ELEMENTS OF Sp (3 , Z) IN Sp (3 , R)""; ""3.1 Introduction"" 327 $a""4.4 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points""""4.5 Contributions from conjugacy classes of elements having a two-dimensional set of fixed points""; ""4.6 Second case of conjugacy classes of elements having a one-dimensional set of fixed points""; ""4.7 Second case of conjugacy classes of elements having a two-dimensional set of fixed points""; ""CHAPTER V: CONTRIBUTIONS FROM CONJUGACY CLASSES IN I??[sub(0)]""; ""5.1 Introduction""; ""5.2 A dimension formula for the principal congruencesubgroup I??[sub(2)](N)"" 327 $a""5.3 Contributions from I??[sub(0)](I)""""5.4 A dimension formula for the principal congruence subgroup I??[sub(3)](N)""; ""5.5 Contributions from I??[sub(0)](II)""; ""5.6 A final remark""; ""REFERENCES"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 50, Number 304. 606 $aCusp forms (Mathematics) 606 $aSelberg trace formula 606 $aIntegrals 608 $aElectronic books. 615 0$aCusp forms (Mathematics) 615 0$aSelberg trace formula. 615 0$aIntegrals. 676 $a512/.72 700 $aEie$b Minking$f1952-$0899499 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480533703321 996 $aDimensions of spaces of Siegel cusp forms of degree two and three$92260059 997 $aUNINA LEADER 00753nam0-2200277 --450 001 9910737596903321 005 20240311125106.0 020 $aIT$b646061 100 $a20230905d1964----kmuy0itay5050 ba 101 0 $aita 102 $aIT 105 $a 001yy 200 1 $aAntologia$fKarl Barth$ga cura di Emanuele Riverso 210 $aMilano$cBompiani$d1964 215 $a333 p., [1] carta di tav.$critr.$d22 cm 225 1 $aPortico$v44 610 0 $aTeologia cattolica 700 1$aBarth,$bKarl$0124507 702 1$aRiverso,$bEmanuele 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910737596903321 952 $aDFT B15.1 BARK 06$b2023/3381$fFLFBC 959 $aFLFBC 996 $aAntologia$989822 997 $aUNINA