LEADER 02812nam 2200553 450 001 9910480525503321 005 20170822144224.0 010 $a1-4704-0444-3 035 $a(CKB)3360000000465027 035 $a(EBL)3114210 035 $a(SSID)ssj0000973873 035 $a(PQKBManifestationID)11553856 035 $a(PQKBTitleCode)TC0000973873 035 $a(PQKBWorkID)10984725 035 $a(PQKB)10084260 035 $a(MiAaPQ)EBC3114210 035 $a(PPN)195417313 035 $a(EXLCZ)993360000000465027 100 $a20050920d2006 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRelatively hyperbolic groups $eintrinsic geometry, algebraic properties, and algorithmic problems /$fDenis V. Osin 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2006. 215 $a1 online resource (114 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 843 300 $a"Volume 179, number 843 (second of 5 numbers)." 311 $a0-8218-3821-0 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Chapter 1. Introduction""; ""1.1. Preliminary remarks""; ""1.2. Main results""; ""Chapter 2. Relative isoperimetric inequalities""; ""2.1. Relative presentations and length functions""; ""2.2. Geometry of van Kampen diagrams over relative presentations""; ""2.3. Relative Dehn functions""; ""2.4. Splitting Theorem for relatively finitely presented groups""; ""2.5. Isoperimetric functions of Cayley graphs""; ""Chapter 3. Geometry of finitely generated relatively hyperbolic groups""; ""3.1. Conventions and notation""; ""3.2. Properties of quasia???geodesics"" 327 $a""3.3. Geodesic triangles in Cayley graphs""""3.4. Symmetric geodesies""; ""Chapter 4. Algebraic properties""; ""4.1. Elements of finite order""; ""4.2. Relatively quasia???convex subgroups""; ""4.3. Cyclic subgroups and translation numbers""; ""Chapter 5. Algorithmic problems""; ""5.1. The word and membership problems""; ""5.2. The parabolicity problems""; ""5.3. Algorithmic problems for hyperbolic elements""; ""Open questions""; ""Appendix. Equivalent definitions of relative hyperbolicity""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 843. 606 $aGeometric group theory 606 $aHyperbolic groups 608 $aElectronic books. 615 0$aGeometric group theory. 615 0$aHyperbolic groups. 676 $a510 s 676 $a512/.2 700 $aOsin$b Denis V.$f1974-$0963693 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480525503321 996 $aRelatively hyperbolic groups$92185001 997 $aUNINA