LEADER 01661cam0-22006131i-450- 001 990003784810403321 005 20160510113506.0 010 $a88-15-03364-5 035 $a000378481 035 $aFED01000378481 035 $a(Aleph)000378481FED01 035 $a000378481 100 $a20030910d1992----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $a<>parabola del sindacato$eascesa e declino di una cultura$fAris Accornero 210 $aBologna$cIl mulino$d1992 215 $a339 p.$d21 cm 225 1 $aContemporanea$v50 610 0 $aSindacati$aItalia 676 $a331.880945 676 $a18630 676 $aG/2.43 676 $a331.8 700 1$aAccornero,$bAris$f<1931- >$0116021 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003784810403321 952 $aDPR 28-795$b18195$fDEC 952 $a331.880945 ACC 1$b3748$fBFS 952 $a331.880945 ACC 1bis$b3532$fBFS 952 $a18630 ACC$b11015$fSES 952 $aCOLLEZ. 858 (50)$b19134$fFSPBC 952 $aXIV G 278$b25677$fFSPBC 952 $a3-7-52-TI$b4310 DEA$fECA 952 $aXV R 684$b336$fDTE 952 $aB-VIII-57$b2497 dip.$fDDRC 952 $aB-VIII-58;69$b2497, 8042 dip.$fDDRC 952 $aSE 102.01.12-$b3173$fDECSE 952 $a967$fBFS 952 $aB-VIII-69$b8042$fDDRC 952 $aXXVIII 913$b3051$fDDCIC 959 $aDEC 959 $aBFS 959 $aSES 959 $aFSPBC 959 $aECA 959 $aDTE 959 $aDDRC 959 $aDECSE 959 $aDDCIC 996 $aParabola del sindacato$9510122 997 $aUNINA LEADER 02812nam 2200553 450 001 9910480525503321 005 20170822144224.0 010 $a1-4704-0444-3 035 $a(CKB)3360000000465027 035 $a(EBL)3114210 035 $a(SSID)ssj0000973873 035 $a(PQKBManifestationID)11553856 035 $a(PQKBTitleCode)TC0000973873 035 $a(PQKBWorkID)10984725 035 $a(PQKB)10084260 035 $a(MiAaPQ)EBC3114210 035 $a(PPN)195417313 035 $a(EXLCZ)993360000000465027 100 $a20050920d2006 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRelatively hyperbolic groups $eintrinsic geometry, algebraic properties, and algorithmic problems /$fDenis V. Osin 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2006. 215 $a1 online resource (114 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 843 300 $a"Volume 179, number 843 (second of 5 numbers)." 311 $a0-8218-3821-0 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Chapter 1. Introduction""; ""1.1. Preliminary remarks""; ""1.2. Main results""; ""Chapter 2. Relative isoperimetric inequalities""; ""2.1. Relative presentations and length functions""; ""2.2. Geometry of van Kampen diagrams over relative presentations""; ""2.3. Relative Dehn functions""; ""2.4. Splitting Theorem for relatively finitely presented groups""; ""2.5. Isoperimetric functions of Cayley graphs""; ""Chapter 3. Geometry of finitely generated relatively hyperbolic groups""; ""3.1. Conventions and notation""; ""3.2. Properties of quasia???geodesics"" 327 $a""3.3. Geodesic triangles in Cayley graphs""""3.4. Symmetric geodesies""; ""Chapter 4. Algebraic properties""; ""4.1. Elements of finite order""; ""4.2. Relatively quasia???convex subgroups""; ""4.3. Cyclic subgroups and translation numbers""; ""Chapter 5. Algorithmic problems""; ""5.1. The word and membership problems""; ""5.2. The parabolicity problems""; ""5.3. Algorithmic problems for hyperbolic elements""; ""Open questions""; ""Appendix. Equivalent definitions of relative hyperbolicity""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 843. 606 $aGeometric group theory 606 $aHyperbolic groups 608 $aElectronic books. 615 0$aGeometric group theory. 615 0$aHyperbolic groups. 676 $a510 s 676 $a512/.2 700 $aOsin$b Denis V.$f1974-$0963693 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480525503321 996 $aRelatively hyperbolic groups$92185001 997 $aUNINA